

Hart Installation and Operating Manual for Eclipse[®] Model 706

Software Version 1.x

High Performance, 4th Generation Guided Wave Radar Level Transmitter

1

PRESSURE EQUIPMENT DIRECTIVE 2014/68/EU

Magnetrol

Read this Manual Before Installing

This manual provides information on the Eclipse[®] transmitter. It is important that all instructions are read carefully and followed in sequence. The *QuickStart Installation* instructions are a brief guide to the sequence of steps for experienced technicians to follow when installing the equipment. Detailed instructions are included in the *Complete Installation* section of this manual.

Conventions Used in this Manual

Certain conventions are used in this manual to convey specific types of information. General technical material, support data, and safety information are presented in narrative form. The following styles are used for notes, cautions, and warnings.

NOTES

Notes contain information that augments or clarifies an operating step. Notes do not normally contain actions. They follow the procedural steps to which they refer.

Cautions

Cautions alert the technician to special conditions that could injure personnel, damage equipment, or reduce a component's mechanical integrity. Cautions are also used to alert the technician to unsafe practices or the need for special protective equipment or specific materials. In this manual, a caution box indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

WARNINGS

Warnings identify potentially dangerous situations or serious hazards. In this manual, a warning indicates an imminently hazardous situation which, if not avoided, could result in serious injury or death.

Safety Messages

The ECLIPSE system is designed for use in Category II, Pollution Degree 2 installations. Follow all standard industry procedures for servicing electrical and computer equipment when working with or around high voltage. Always shut off the power supply before touching any components. Although high voltage is not present in this system, it may be present in other systems.

Electrical components are sensitive to electrostatic discharge. To prevent equipment damage, observe safety procedures when working with electrostatic sensitive components.

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation. **WARNING!** Explosion hazard. Do not connect or disconnect designs rated Explosion proof or Non-incendive unless power has been switched off and/or the area is known to be non-hazardous.

Low Voltage Directive

For use in Installations Category II, Pollution Degree 2. If equipment is used in a manner not specified by the manufacturer, protection provided by equipment may be impaired.

Notice of Copyright and Limitations

Magnetrol[®] & Magnetrol[®] logotype and Eclipse[®] are registered trademarks of Magnetrol[®] International, Incorporated.

Copyright © 2020 Magnetrol® International, Incorporated. All rights reserved.

MAGNETROL reserves the right to make changes to the product described in this manual at any time without notice. MAGNETROL makes no warranty with respect to the accuracy of the information in this manual.

Warranty

All MAGNETROL electronic level and flow controls are warranted free of defects in materials or workmanship for 18 months from the date of original factory shipment. If returned within the warranty period; and, upon factory inspection of the control, the cause of the claim is determined to be covered under the warranty; then, MAGNETROL will repair or replace the control at no cost to the purchaser (or owner) other than transportation.

MAGNETROL shall not be liable for misapplication, labor claims, direct or consequential damage or expense arising from the installation or use of equipment. There are no other warranties expressed or implied, except special written warranties covering some MAGNETROL products.

Quality Assurance

The quality assurance system in place at MAGNETROL guarantees the highest level of quality throughout the company. MAGNETROL is committed to providing full customer satisfaction both in quality products and quality service.

The MAGNETROL quality assurance system is registered to ISO 9001 affirming its commitment to known international quality standards providing the strongest assurance of product/service quality available.

Eclipse® Model 706 Guided Wave Radar Transmitter

Table of Contents

1.0	Qui	ickStart Installation
	1.1	Getting Started6
		1.1.1 Equipment and Tools6
		1.1.2 Configuration Information7
	1.2	QuickStart Mounting7
		1.2.1 Probe
		1.2.2 Transmitter
	1.3	QuickStart Wiring9
	1.4	QuickStart Configuration9
		1.4.1 QuickStart Menu Options11
		1.4.1.1 QuickStart Numerical Data Entry12
2.0	Cor	nplete Installation
	2.1	Unpacking13
	2.2	Electrostatic Discharge (ESD)
		Handling Procedure
	2.3	Before You Begin14
		2.3.1 Site Preparation14
		2.3.2 Equipment and Tools14
		2.3.3 Operational Considerations14
	2.4	Mounting15
		2.4.1 Installing a Coaxial Probe15
		2.4.1.1 To install a coaxial probe16
		2.4.2 Installing a Segmented Coaxial Probes16
		2.4.3 Installing a Caged Probe17
		2.4.3.1 To install a caged probe17
		2.4.4 Installing a Single Rod Probe18
		2.4.4.1 To install a rigid single rod probe19
		2.4.4.2 To install a flexible single rod probe
		for liquids19
		2.4.4.3 To install a flexible single rod probe
		for solids20
		2.4.5 Installing the ECLIPSE Model 706
		Transmitter21
		2.4.5.1 Integral Mount21

		2.6.1	Ben	ch Configuration	23
		2.6.2	Mei	nu Traversal and Data Entry	24
		2.6	.2.1	Navigating the Menu	24
		2.6	.2.2	Data Selection	24
		2.6	.2.3	Entering Numeric Data Using	
				Digit Entry	25
		2.6	.2.4	Entering Numeric Data	
				Using Increment/Decrement	25
		2.6	.2.5	Entering Character Data	26
		2.6.3	Pass	sword Protection	26
		2.6.4	Mo	del 706 Menu: Step-By-Step Procedur	e27
		2.6.5	Mo	del 706 Configuration Menu —	
			Dev	vice Setup	29
	2.7	Confi	gurat	tion Using HART®	35
		2.7.1	Cor	nnections	35
		2.7.2		RT Communicator Display	
		2.7.3	HA	RT Revision Table	35
		2.7.4	HA	RT Menu — Model 706	35
3.0	Refe	erence	Info	rmation	
0.0				r Description	40
				Operation	
		3.2.1	•	ided Wave Radar	
		2 2 2 2		ne Domain Reflectometry (TDR)	
		J.L.L	Tim	ie Domain Reflectometry (TDR)	
		3.2.2		•	
		3.2.3	Equ	ivalent Time Sampling (ETS)	41
		3.2.3 3.2.4	Equ Inte	ivalent Time Sampling (ETS)	41 41
		3.2.3 3.2.4	Equ Inte Satu	ivalent Time Sampling (ETS) erface Detection urated Steam Applications	41 41 42
	3.3	3.2.33.2.43.2.53.2.6	Equ Inte Satu Ove	ivalent Time Sampling (ETS)	41 41 42 43
	3.3	3.2.33.2.43.2.53.2.6	Equ Inte Satu Ove	vivalent Time Sampling (ETS) erface Detection urated Steam Applications erfill Capability	41 41 42 43 43
	3.3	3.2.3 3.2.4 3.2.5 3.2.6 Troub	Equ Inte Satu Ove olesho Dia	ivalent Time Sampling (ETS) erface Detection urated Steam Applications erfill Capability poting and Diagnostics	41 42 43 43 43 44
	3.3	3.2.3 3.2.4 3.2.5 3.2.6 Troub 3.3.1	Equ Inte Satu Ove olesho Dia Dia	aivalent Time Sampling (ETS) erface Detection urated Steam Applications erfill Capability poting and Diagnostics gnostics (Namur NE 107)	41 42 43 43 44 46
	3.3	3.2.3 3.2.4 3.2.5 3.2.6 Troub 3.3.1 3.3.2	Equ Inte Satu Ove olesho Dia Dia	aivalent Time Sampling (ETS) erface Detection urated Steam Applications erfill Capability poting and Diagnostics gnostics (Namur NE 107) gnostic Indication Simulation	41 42 43 43 43 44 46 46
	3.3	3.2.3 3.2.4 3.2.5 3.2.6 Troub 3.3.1 3.3.2 3.3.3 3.3.4	Equ Inte Satu Ove lleshc Dia Dia Dia	ivalent Time Sampling (ETS) erface Detection urated Steam Applications erfill Capability poting and Diagnostics gnostics (Namur NE 107) gnostic Indication Simulation gnostic Indication Table	41 42 43 43 44 46 46 49
	3.3	3.2.3 3.2.4 3.2.5 3.2.6 Troub 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	Equ Inte Satu Ove lleshc Dia Dia Dia	aivalent Time Sampling (ETS) erface Detection urated Steam Applications erfill Capability poting and Diagnostics gnostics (Namur NE 107) gnostic Indication Simulation gnostic Indication Table gnostic Help	41 42 43 43 43 44 46 46 46 49 50
		3.2.3 3.2.4 3.2.5 3.2.6 Troub 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.4	Equ Inte Satu Ove Dia Dia Dia Dia Tro .5.1	aivalent Time Sampling (ETS) erface Detection urated Steam Applications erfill Capability poting and Diagnostics gnostics (Namur NE 107) gnostic Indication Simulation gnostic Indication Table gnostic Help ubleshooting Application Issues	41 42 43 43 44 46 46 46 49 50
		3.2.3 3.2.4 3.2.5 3.2.6 Troub 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.5 3.3.5 3.3.1	Equ Inte Satu Ove blesho Dia Dia Dia Trov .5.1 gurat	aivalent Time Sampling (ETS) erface Detection urated Steam Applications erfill Capability poting and Diagnostics gnostics (Namur NE 107) gnostic Indication Simulation gnostic Indication Table ubleshooting Application Issues Model 706 (Single Rod Probe)	41 42 43 43 44 46 46 46 49 50 50 52

	2 (2	
		Echo Rejection
		Volumetric Capability
	3.4.	4.1 Configuration using built-in
		vessel types54
	-	4.2 Configuration using Custom Table56
		Open Channel Flow Capability57
	3.4.	5.1 Configuration using Flume/Weir
		Equations58
	3.4.	5.2 Configuration using Generic
		Equation59
	3.4.	5.3 Configuration using Custom Table60
	3.4.6	Reset Function61
	3.4.7	Additional Diagnostic/Troubleshooting
		Capabilities61
	3.4.	7.1 Event History61
	3.4.	7.2 Context-sensitive Help61
	3.4.	7.3 Trend Data61
3.5	Agenc	y Approvals62
	3.5.1	Special Conditions for use63
	3.5.2	Agency Specifications (XP Installation)63
	3.5.3	Agency Specifications (IS Installation)64
	3.5.4	Agency Specifications
		(IS, FOUNDATION Fieldbus [™] Installation)65
3.6	Specif	ications66
	3.6.1	Functional/Physical66
	3.6.2	O-ring (Seal) Selection Chart68
	3.6.3	Probe Selection Guide
	3.6.4	Probe Specifications70
	3.6.5	Physical Specifications — Transmitter72
	3.6.6	Physical Specifications - 705/706 Adapter72
	3.6.7	Physical Specifications - Coaxial Probes73
	3.6.8	Physical Specifications - Caged Probes75
	3.6.9	Physical Specifications —
		Single Rod Flexible Probes76
	3.6.10	Physical Specifications —
		Single Rod Rigid Probes77
	3.6.11	Power Supply Requirements
		11.1 Safe Operating Area78
	3.6.	11.2 Supply Voltage78

3.7	Mode	l Numbers	79	
	3.7.1	Transmitter	79	
	3.7.2	Enlarged Coaxial Probe	80	
	3.7.3	Small Coaxial Probe	82	
	3.7.4	Caged Probe	84	
	3.7.5	Single Rod Rigid Probe	86	
	3.7.6	Single Rod Flexible Probe		
	3.7.7	Segmented Probe Options	90	
3.8	Parts.		90	
	3.8.1	Replacement Parts	90	
4.0 Adva	anced (Configuration/Troubleshooting Techni	ques	
4.1	End-of	-Probe Analysis (EOPA)	93	
	4.1.1 Enable EOPA using PACT ware93			
	4.1.2 Enable EOPA using keyboard/LCD94			
4.2	Sloped	Threshold	95	
4.3	Echo F	Rejection	97	
4.4	Buildu	p Detection	100	
	4.4.1	Buildup Detection Setup		
		using PACT ware	101	
	4.4.2	Buildup Detection Setup		
	using the Keypad102			

1.0 QuickStart Installation

The QuickStart Installation procedures provide an overview of the key steps required for mounting, wiring, and configuring the ECLIPSE Model 706 Guided Wave Radar level transmitter. These procedures are intended for more experienced installers of ECLIPSE transmitters (or other electronic level measurement instruments).

Section 2.0, Complete Installation, offers more detailed installation instructions for the first time user.

WARNING: Overfill-capable probes such as the Model 7yD, 7yG, 7yJ, 7yL, 7yP, or 7yT should be used for all Safety Shutdown/Overfill applications.

The Model 706 transmitter, when used with an overfill coaxial or caged probe, is capable of measuring true liquid level all the way up to the face of the flange or NPT connection. This is a very unique advantage as compared to other Guided Wave Radar (GWR) devices that may infer level at the top of the probe when signals are lost or uncertain. Refer to Section 3.2.6 for additional information on overfill capability.

Depending on the probe type, all other ECLIPSE probes should be installed so the maximum overfill level is a minimum of 150–300 mm (6"-12") below the flange or NPT connection. This may include utilizing a nozzle or spool piece to raise the probe. Consult factory to ensure proper installation and operation.

1.1 Getting Started

Have the proper equipment, tools, and information available before beginning the QuickStart Installation procedures.

1.1.1 Equipment and Tools =

- Open-end wrenches (or adjustable wrench) to fit the process connection size and type.
 - ° Coaxial probe: 1 1/2" (38 mm)
 - Single rod probe: 1 7/8" (47 mm)
 - Transmitter 1 1/2" (38 mm).
 - A torque wrench is highly desirable.
- Flat-blade screwdriver
- Cable cutter and 3/32" hex wrench (for flexible cable probes only)
- Digital multimeter or digital volt/ammeter
- 24 VDC power supply, 23 mA minimum

1.1.2 Configuration Information

To utilize the QuickStart menu available on the ECLIPSE Model 706, some key information is required for configuration.

Gather the information and complete the following operating parameters table before beginning configuration.

NOTES: The QuickStart menu is available for Level Only applications.

- 1. Refer to Section 2.6.5 for configuration menus for Interface, Volume or Flow applications.
- 2. These configuration steps are not necessary if the transmitter was pre-configured prior to shipment.

Display	Question	Answer
Level Units	What units of measurement will be used? (inches, millimeters, centimeters, feet or meters)	
Probe Model	What probe model is listed on the model information? (first three digits of probe model number)	
Probe Mount	Is the probe mounted NPT, BSP, or flange? (Refer to probe model.)	
Probe Length	What probe length is listed on the probe model information? (last three digits of the probe model number)	
Level Offset	The desired level reading when the liquid is at the tip of the probe. (Refer to Section 3.4 for more information.)	
Dielectric Range	e What is the dielectric constant range of the process medium?	
4.0 mA Set Point (Does not apply for	What is the 0% reference point for the 4.0 mA value? FOUNDATION Fieldbus™ or PROFIBUS PA)	
20.0 mA Set Point	What is the 100% reference point for the 20.0 mA value? (Ensure that this value is outside of the Blocking Distance when utilizing non- overfill-capable probes.) FOUNDATION Fieldbus [™] or PROFIBUS PA)	
Failure Alarm	What output current is desired when	
	a Failure Indicator is present?	
(Does not apply for	FOUNDATION Fieldbus [™] or PROFIBUS PA)	

1.2 QuickStart Mounting

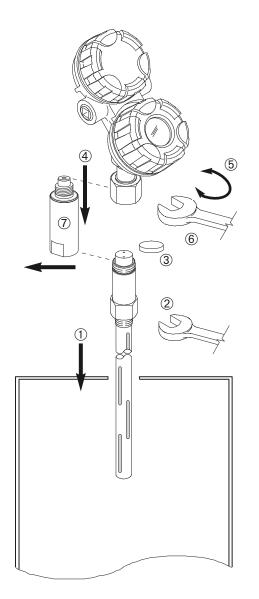
Ensure that the configuration style and process connection size/type of the ECLIPSE transmitter and probe matches the requirements of the installation before continuing with the QuickStart installation.

For optimal performance (and correlation to the Calibration Certificate included with all units), confirm the model and serial numbers shown on the nameplates of the ECLIPSE probe and transmitter are identical.

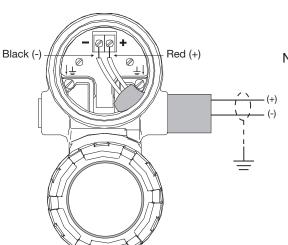
NOTE: For applications using the Model 7yS Steam Probe, it is mandatory to keep the transmitter and probe matched as a set. (Refer to Section 3.2.5 for additional information regarding saturated steam applications.)

> To avoid moisture ingress in the housing, covers should be fully tightened at all times. For same reason, conduit entries should be properly sealed.

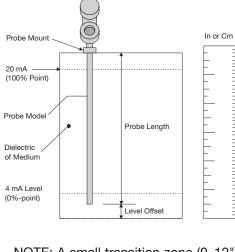
- 1. Carefully place the probe into the vessel. Align the probe process connection with the threaded or flanged mounting on the vessel.
- 2. Tighten the hex nut of the probe process connection or flange bolts.
- NOTE: Leave the plastic protective cap in place on the probe until you are ready to install the transmitter. Do not use sealing compound or TFE tape on probe connection to transmitter as this connection is sealed with a Viton[®] o-ring.


If using a segmented probe or removable rod, ensure that all pieces are assembled and connected before installation.

1.2.2 Transmitter


- 3. Remove the protective plastic cap from the top of the probe and store for future use. Make sure the top probe connector (male connection) is clean and dry. Clean with isopropyl alcohol and cotton swabs if necessary.
- 4. Carefully place the transmitter onto the probe. Align the universal connection at the base of the transmitter housing with the top of the probe. Only hand-tighten the connection at this point in time.
- 5. Rotate the transmitter so that it is in the most convenient position for wiring, configuring and viewing.
- 6. Using a 1 1/2" (38 mm) wrench, tighten the universal connection on the transmitter 1/4 to 1/2 turn beyond hand-tight. As this is a critical connection, a torque wrench is highly recommended to obtain 60 Nm (45 ft-lbs).

DO NOT LEAVE HAND-TIGHT.


- NOTE: The ECLIPSE Model 706 transmitter can be supplied with a universal connector containing lock screws for applications with significant vibration. Contact the factory for additional information.
 - 7. If available, install optional adapter for use with Model 705 probes. As this is a critical connection, a torque wrench is highly recommended to obtain 60 Nm (45 ft-lbs).

1.3 QuickStart Wiring

NOTE: A small transition zone (0–12") (0-300 mm) may exist at the top and bottom of certain probes.

- **WARNING!** Possible explosion hazard. Do not connect or disconnect equipment unless power has been switched off and the area is known to be non-hazardous.
- NOTE: Ensure that the electrical wiring to the ECLIPSE Model 706 transmitter is complete and in compliance with all local regulations and codes.
 - 1. Remove the cover of the upper wiring compartment of the Model 706 transmitter.
 - 2. Connect the positive supply wire to the (+) terminal and the negative supply wire to the (-) terminal. For Explosion Proof Installations, see Wiring, Section 2.5.
 - 3. Replace and tighten the cover.

1.4 QuickStart Configuration

If requested, the ECLIPSE Model 706 transmitter is shipped fully pre-configured for the application and can be installed immediately. Otherwise it is shipped configured with default values from the factory and can be easily reconfigured in the shop.

The minimum configuration instructions required for using the QuickStart menu follow. Use the information from the operating parameters table in Section 1.1.2 before proceeding with the configuration.

The QuickStart menu offers a very simple two screen overview showing the basic parameters required for typical "Level Only" operation.

1. Apply power to the transmitter.

The graphic LCD display can be programmed to change every 2 seconds to show pertinent Measured Values on the Home Screen. For example: Level, %Output, and Loop current can all be displayed on a rotating screen.

The LCD can also be programmed to always show just one of the Measured Variables at all times. For example: Level can be the only value displayed on the screen.

2. Remove the lower electronic compartment cover.

- 3. The push buttons offer multiple forms of functionality for menu navigation and data entry. (See Section 2.6 for complete explanation).

 - DOWN moves down through the menu or decreases a displayed value.
 - **BACK** exits a branch of the menu or exits without accepting entered value.
 - Senters a branch of the menu or accepts a displayed entry.
- NOTE: Holding down ENTER when any menu or parameter is highlighted will show help text in reference to that item.

The default User Password = 0. (If a password is requested, enter it at that time.)

The following configuration entries are the minimum required for a QuickStart configuration. Refer to figures at left.

- 4. Press any key at the Home Screen to access the Main Menu.
- 5. Press +> ENTER with the DEVICE SETUP menu item highlighted.
- 6. Press +> ENTER with the QUICKSTART menu item highlighted.

The QuickStart shows the basic parameters, with the present value of the highlighted parameter shown at the bottom of the screen.

One can now quickly and easily scroll through the QuickStart configuration items, changing those parameters as required:

- Scroll to the parameter to be changed.
- Press => ENTER at the highlighted parameter.
- Scroll to the desired option, then press \Rightarrow ENTER.
- Scroll to next parameter or press <>>> BACK when finished to exit the QuickStart menu.

Section 1.4.1 lists and describes the nine parameters in the QuickStart menu.

- 7. After making all of the necessary changes in the QuickStart menu, press the BACK button three times to return to the Home Screen.
- 8. The QuickStart configuration is complete. If properly configured, the Model 706 transmitter is measuring level and is ready for service.

1.4.1 QuickStart Menu Options -

	vel Units	Select the Units of measurement for the level readout:			
Inches • Feet • Millimeters • Centimeters • Meters					
Adapter YES — Model 705 probe models appear below NO — Model 706 probe models appear below					
Pro	be Model	Select the Probe Model to be used with Model 706: (NOTE: All Probe Models may not be available depending on the firmware version.)			
		 7YD Coaxial High Temperature High Pressure 7YF Single Rod for installation onto tanks 7YG Single Rod for installation into cages 7YH Single Hygienic (Future) 7YJ Single High Temperature High Pressure for cages 7YL Single Rod High Pressure for cages 7YM Single Rod High Pressure for tanks 7YN Single Rod High Temperature High Pressure for tanks 7YP Coaxial High Pressure 7YS Coaxial Steam 7YY Coax High Vibration (Future) 7Y1 Single Flexible Standard 7Y2 Single Flexible Bulk Solids 7Y3 Single Flexible High Temperature High Pressure for Cages 			
Probe Mount		 Select the type of Probe Mounting to the vessel: (NOTE: All Probe Mount options may not be available depending on the firmware version). NPT (National Pipe Thread) BSP (British Standard Pipe) Flange (ASME or EN) NPT with Flushing Connection BSP with Flushing Connection Flange with Flushing Connection Flange with Flushing Connection Hygienic 			
Pro	bbe Length	Enter the exact Probe Length as printed on the probe nameplate. Probe Length is shown as the last three digits of the Probe Model number. Range is 30 cm to 30 meters (12 inches to 100 feet) probe dependent. Refer to Section 1.4.1.1.			
Lev	vel Offset	Enter the desired level reading when the liquid is at the end of the probe. Range is -762 cm to 22 meters (-25 feet to 75 feet). Refer to Section 3.4 for further information. (With default Level Offset = 0, all measurements are referenced from the bottom of the probe.)			
Dielectric Range		Enter the Dielectric Range for the material to be measured. Below 1.7 (Light Hydrocarbons like Propane and Butane) 1.7 to 3.0 (Most typical hydrocarbons) 3.0 to 10 (Varying dielectric, for example: mixing tanks) Above 10 (Water-based media)			
	(LRV)	Enter the level value (0 %-point) for the 4 mA point. Lower Range Value (LRV). Refer to Section 1.4.1.1.			
Hart Only	20 mA Set Point (URV)	Enter the level value (100 %-point) for the 20 mA point. Upper Range Value (URV). Refer to Section 1.4.1.1.			
Failure Alarm Enter the desired output state when a Failure Indicator is active. • 22 mA • 3.6 mA • Hold (Hold last value is not recommended)					

1.4.1.1 QuickStart Numerical Data Entry

To make numerical entry changes to Probe Length and Level Offset:

 $\mathbf{\hat{T}}$ **UP** moves up to the next highest digit (0,1,2,3,....,9 or the decimal point).

If held down the digits scroll until the push button is released.

- DOWN moves up to the next lowest digit (0,1,2,3,....,9 or the decimal point). If held down the digits scroll until the push button is released.
- **BACK** moves the cursor to the left and deletes a digit. If the cursor is already at the leftmost position, then the screen is exited without changing the previously saved value.
- ► ENTER Moves the cursor to the right. If the cursor is located at a blank character position, the new value is saved.

Scrolling further DOWN in the QuickStart menu results in the remaining parameters appearing one by one, with the present highlighted value shown at the bottom of the screen.

- **BACK** returns to the previous menu without changing the original value, which is immediately redisplayed.
- ►> ENTER accepts the displayed value and returns to the previous menu.

Negative values can be entered by highlighting the "+" sign shown prior to the number, then pressing **UP** to change it to show "-".

2.0 Complete Installation

This section provides detailed procedures for properly installing, wiring, and configuring the ECLIPSE Model 706 Guided Wave Radar Level Transmitter.

2.1 Unpacking

Unpack the instrument carefully. Make sure all components have been removed from the packing material. Check all the contents against the packing slip and report any discrepancies to the factory.

Before proceeding with the installation, do the following:

- Inspect all components for damage. Report any damage to the carrier within 24 hours.
- Make sure the nameplate model number on the probe and transmitter agree with the packing slip and purchase order.
- Record the model and serial numbers for future reference when ordering parts.

Model Number

Serial Number

For optimal performance (and correlation to the Calibration Certificate included with all units), confirm the model and serial numbers shown on the nameplates of the ECLIPSE probe and transmitter are identical.

NOTE: For applications using the Model 7yS Steam Probe, it is mandatory to keep the transmitter and probe matched as a set. (Refer to section 3.2.5 for additional information regarding saturated steam applications.)

> To avoid moisture ingress in the housing, covers should be fully tightened at all times. For same reason, conduit entries should be properly sealed.

2.2 Electrostatic Discharge (ESD) Handling Procedure

MAGNETROL electronic instruments are manufactured to the highest quality standards. These instruments use electronic components that may be damaged by static electricity present in most work environments.

The following steps are recommended to reduce the risk of component failure due to electrostatic discharge.

• Ship and store circuit boards in anti-static bags. If an antistatic bag is not available, wrap the board in aluminum foil. Do not place boards on foam packing materials.

- Use a grounding wrist strap when installing and removing circuit boards. A grounded workstation is recommended.
- Handle circuit boards only by the edges. Do not touch components or connector pins.
- Make sure that all electrical connections are completely made and none are partial or floating. Ground all equipment to a good, earth ground.

2.3 Before You Begin

2.3.1 Site Preparation

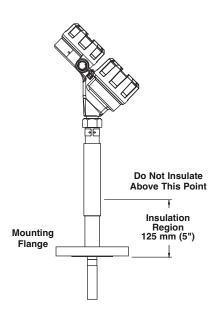
Each ECLIPSE Model 706 transmitter/probe is built to match the physical specifications of the required installation. Ensure that the probe process connection is correct for the threaded or flanged mounting on the vessel where the transmitter will be placed. See Mounting, Section 2.4.

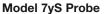
Ensure that all local, state, and federal regulations and guidelines are observed. See Wiring, Section 2.5.

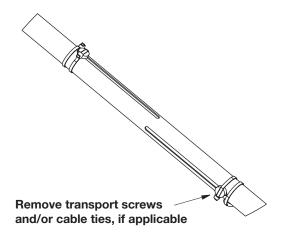
Ensure that the wiring between the power supply and ECLIPSE transmitter is complete and correct for the type of installation. See Specifications, Section 3.6.

2.3.2 Equipment and Tools

No special equipment or tools are required to install the ECLIPSE transmitter. The following items are recommended:


- Open-end wrenches (or adjustable wrench) to fit the process connection size and type.
 - ° Coaxial probe: 1 1/2" (38 mm)
 - Single Rod probe: 1 7/8" (47 mm)
 - Transmitter 1 1/2" (38 mm)


A torque wrench is highly desirable.


- Flat-blade screwdriver
- Cable cutter and 3/32" hex wrench (for flexible cable probes only)
- Digital multimeter or digital volt/ammeter
- 24 VDC power supply, 23 mA minimum

2.3.3 Operational Considerations

Operating specifications vary based on probe model number. See Specifications, Section 3.6.

2.4 Mounting

An ECLIPSE Model 706 GWR probe can be mounted on to a tank using a variety of process connections. Generally, either a threaded or flanged connection is used. For information about the sizes and types of connections available, see Probe Model Numbers, Section 3.7.2.

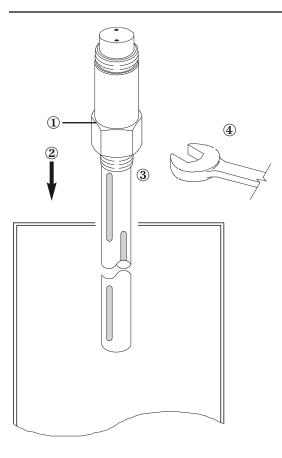
NOTE: Do not place insulating material around any part of the ECLIPSE Model 706 transmitter as this may cause excessive heat buildup. The figure to the left shows an example of properly installed insulation. Insulation is critical in high temperature applications where condensation can occur at the top of the probe.

Ensure that all mounting connections are properly in place on the tank before installing the probe.

Compare the nameplate on the probe and transmitter with the product information to confirm that the ECLIPSE probe is correct for the intended installation.

WARNING! Overfill-capable probes such as the Model 7yD, 7yG, 7yJ, 7yL, 7yP, or 7yT should be used for all Safety Shutdown/Overfill applications.

The Model 706 transmitter, when used with an overfill coaxial or caged probe, is capable of measuring true liquid level to within specification all the way up to the face of the flange or NPT connection. This is a very unique advantage as compared to other Guided Wave Radar (GWR) devices that may infer level at the top of the probe when signals are lost or uncertain. Refer to Section 3.2.6 for additional information on overfill capability.


All other ECLIPSE probes should be installed so the maximum overfill level is a minimum of 150 mm (6") below the flange or NPT connection. This may include utilizing a nozzle or spool piece to raise the probe. Consult factory to ensure proper installation and operation.

- **WARNING!** Do not disassemble probe when in service and under pressure.
- NOTE: Models 7yD, 7yJ, 7yL, 7yM, 7yN, 7yP and 7yS High Temperature/High Pressure probes (containing a glass ceramic alloy process seal) should be handled with extra care. Only handle these probes by the flanges or NPT connections. Remove transport hardware as shown at left.

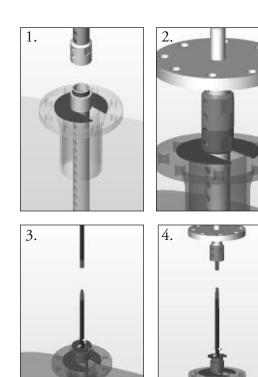
2.4.1 Installing a Coaxial Probe (Models 7yD, 7yP, 7yS, and 7yT)

Before installing, ensure that:

• The model and serial numbers shown on the nameplates of the ECLIPSE probe and transmitter are identical. For optimal performance (and correlation to the Calibration Certificate included with all units), transmitters and probes should be installed as a matched set.

- NOTE: For applications using the Model 7yS Steam Probe, it is mandatory to keep the transmitter and probe matched as a set. Refer to Section 3.2.5 for additional information regarding saturated steam applications.
 - Probe has adequate room for installation and has unobstructed entry to the bottom of the vessel.
 - Process temperature, pressure, dielectric, and viscosity are within the probe specifications for the installation. See Specifications, Section 3.6.
- 2.4.1.1 To install a coaxial probe:
 - 1. Ensure that the process connection is the correct threaded or flanged mounting.
 - 2. Carefully place the probe into the vessel. Properly align the gasket on flanged installations.
 - 3. Align the probe process connection with the threaded or flanged mounting on the vessel.
 - 4. For threaded connections, tighten the hex nut of the probe process connection. For flanged connections, tighten flange bolts.
- NOTE: If the transmitter is to be installed at a later time, do not remove the protective cap from the probe.
- NOTE: Do not use sealing compound or TFE tape on probe connection to transmitter as this connection is sealed by a Viton[®] o-ring.

2.4.2 Installing a Segmented Coaxial Probe -


1. Use the large installation plate with the 1.88" slot (provided with the order) to hold the lower section of the outer tube. Using two 2" wrenches, tighten couplings. Threads will be self-locking.

Repeat for the second outer tube section.

 Use the smaller installation plate to hold the lower section of the extension shaft, resting one of the spacers on the plate. Using two 1/2" wrenches, tighten extension shaft coupling. Secure with set screws.

Repeat for the second extension shaft section.

- Using two 1/2" wrenches, attach the middle extension shaft segment to the top segment (built into the probe head). The flange gasket should be in place before assembling this joint. It may be taped to the probe flange to hold it out of the way.
- 4. Remove the smaller installation plate from the extension shaft and assemble the middle outer tube segment to the coupling on the probe head. Remove the large installation plate, and assemble the flanges.

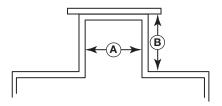
2.4.3 Installing a Caged Probe Models 7yG, 7yL and 7yJ

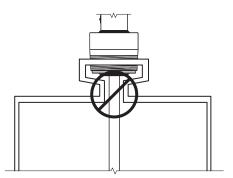
Before installing, ensure that the:

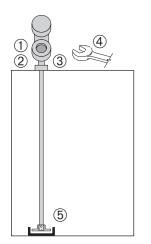
- The model and serial numbers shown on the nameplates of the ECLIPSE probe and transmitter are identical. For optimal performance (and correlation to the Calibration Certificate included with all units), transmitters and probes should be installed as a matched set.
- Probe has adequate room for installation and has unobstructed entry to the bottom of the vessel.
- Process temperature, pressure, dielectric, and viscosity are within the probe specifications for the installation. See Specifications, Section 3.6.
- NOTE: Model 7yL and 7yJ probes (High Pressure/High Temperature probes (containing a glass ceramic alloy process seal) should be handled with extra care. Only handle these probes by the flanges or NPT connection. Do not lift probes by the shaft.
- 2.4.3.1 To install a caged probe:
 - 1. Ensure that the process connection is the correct flanged mounting.
 - 2. Carefully place the probe into the vessel. Properly align the gasket on flanged installations.
- NOTE: A metallic gasket must be used to ensure an adequate electrical connection between the probe flange and the cage (chamber). This connection is critical to obtain true overfill performance.
 - 3. Align the probe process connection flanged mounting on the cage.
 - 4. Tighten flange bolts.
- NOTES: If the transmitter is to be installed at a later time, do not remove the protective cap from the probe.

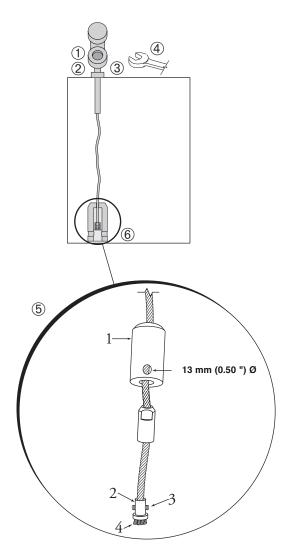
Do not use sealing compound or TFE tape on probe connection to transmitter as this connection is sealed by a Viton[®] o-ring.

2.4.4 Installing a Single Rod Probe Rigid Models 7yF, 7yG, 7yJ, 7yL, 7yM and 7yN Flexible Models 7y1, 7y2, 7y3 and 7y6


Before installing, ensure that the:


- The model and serial numbers shown on the nameplates of the ECLIPSE probe and transmitter are identical. For optimal performance (and correlation to the Calibration Certificate included with all units), transmitters and probes should be installed as a matched set.
- Probe has adequate room for installation and has unobstructed entry to the bottom of the vessel.
- Process temperature, pressure, dielectric, and viscosity are within the probe specifications for the installation. See Specifications, Section 3.6.


For standard Non-Overfill-Capable Single Rod probes installed directly into a vessel:


- NOTE: If using a removable rod, ensure that all pieces are assembled and connected before installation.
 - 1. Ensure that the nozzle does not restrict performance by ensuring the following:
 - Nozzle is > 50 mm (2") diameter.
 - Ratio of Diameter: Length (A:B) is 1:1 or greater; any ratio <1:1 (e.g., a 2"× 6" nozzle = 1:3) may require a Blocking Distance and/or DIELECTRIC RANGE adjustment.
 - 2. No pipe reducers (restrictions) are used.
 - 3. Probe is kept away from conductive objects to ensure proper performance.
 - See Probe Clearance Table below. A lower gain (increase in DIELECTRIC RANGE setting) may be necessary to ignore certain objects
 - This table is only a recommendation. These distances can be improved by optimizing the transmitter configuration with PACT ware[™].

Distance to Probe	Acceptable Objects
<15 cm (6")	Continuous, smooth, parallel conductive surface, for example a metal tank wall; important that probe does not touch wall
>15 cm (6")	<25 mm (1") diameter pipe and beams, ladder rungs
>30 cm (12")	<75 mm (3") diameter pipe and beams, concrete walls
>46 cm (18")	All remaining objects

- 2.4.4.1 To install a rigid single rod probe:
 - 1. Ensure that the process connection is at least 1" NPT or a flanged mounting.
 - 2. Carefully place the probe into the vessel. Align the gasket on flanged installations.
 - 3. Align the probe process connection with the threaded or flanged mounting on the vessel.
 - 4. For threaded connections, tighten the hex nut of the probe process connection. For flanged connections, tighten flange bolts.
 - 5. When mounted directly into vessels, the probe can be stabilized by placing the tip of the probe into a non-metallic cup or bracket at the bottom of the probe.

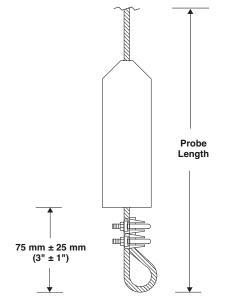
A bottom spacer option is offered for mounting into a metallic cup or bracket or for centering within a pipe/chamber. Please refer to Replacement Parts, Section 3.8 for additional information.

- NOTE: If the transmitter is to be installed at a later time, do not remove the protective cap from the probe. Do not use sealing compound or TFE tape on probe connection to transmitter as this connection is sealed by a Viton[®] O-ring.
- 2.4.4.2 To install a flexible single rod probe for liquids:
 - 1. Make sure the process connection is at least 1" NPT or a flanged mounting.
 - 2. Carefully place the probe into the vessel. Align the gasket on flanged installations.
 - 3. Align the probe process connection with the threaded or flanged mounting on the vessel.
 - 4. For threaded connections, tighten the hex nut of the probe process connection. For flanged connections, tighten flange bolts.
 - 5. Probe can be shortened in field:
 - a. Raise TFE weight (1) exposing securing device (2).
 - b. Loosen both #10–32 set screws (3) using 3/32" hex wrench and remove securing device.
 - c. Cut and remove needed cable (4) length.
 - d. Reattach securing device and tighten screws.
 - e. Enter new probe length (in the appropriate units) into the transmitter.
 - Probe can be attached to the tank bottom using the 13 mm (0.50") hole provided in the TFE weight. Cable tension should not exceed 23 Kgs (50 lbs).

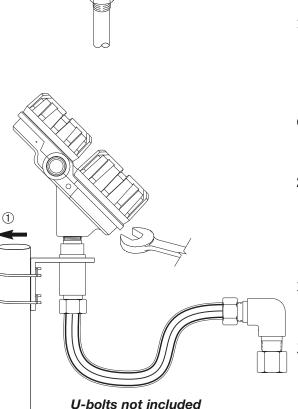
2.4.4.3 To install a flexible single rod probe for solids:

The Model 7y2 Single Flexible Bulk Solids probe is designed for a 1360 kg (3000 lb.) pull-down force for use in applications such as sand, plastic pellets and grains. It is offered with a maximum 30.5 meter (100 foot) probe length.

Model 7y2 Single Rod — dielectric \geq 4 probe length dependent.


Applications

- Salts: Dielectric constant 4.0–7.0
- Metallic powder, coal dust: Dielectric constant >7


NOTE: Contact the factory for those applications requiring additional pull down forces such as cement, heavy gravel, etc.

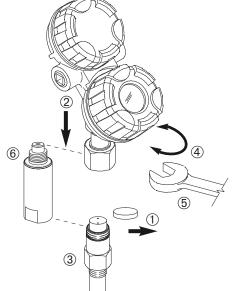
Mounting recommendations

- To reduce forces, utilize the standard 2.3 kg (5 lb.) weight at the bottom of the probe instead of securing the probe to the vessel.
- Mount the probe at least 30 cm (12 inches) from the wall. Ideal location is 1/4 to 1/6 the diameter to average the angle of repose.
- A metal flange must be used when mounting on plastic vessels.
- 1. Ensure the process connection is at least 2" NPT or a flanged mounting.
- 2. Carefully place the probe into the vessel. Align the gasket on flanged installations.
- 3. Align the probe process connection with the threaded or flanged mounting on the vessel.
- 4. For threaded connections, tighten the hex nut of the probe process connection. For flanged connections, tighten flange bolts.
- 5. Probe can be shortened in field:
- 6. a. Loosen and remove the two cable clamps.
 - b. Slide the weight off of the probe.
 - c. Cut the cable to the required length plus 165 mm (6.5 inches).
 - d. Slide the weight back on to the probe.
 - e. Reinstall the two cable clamps and tighten.
 - f. Enter the new probe length (in the appropriate level units) into the transmitter.

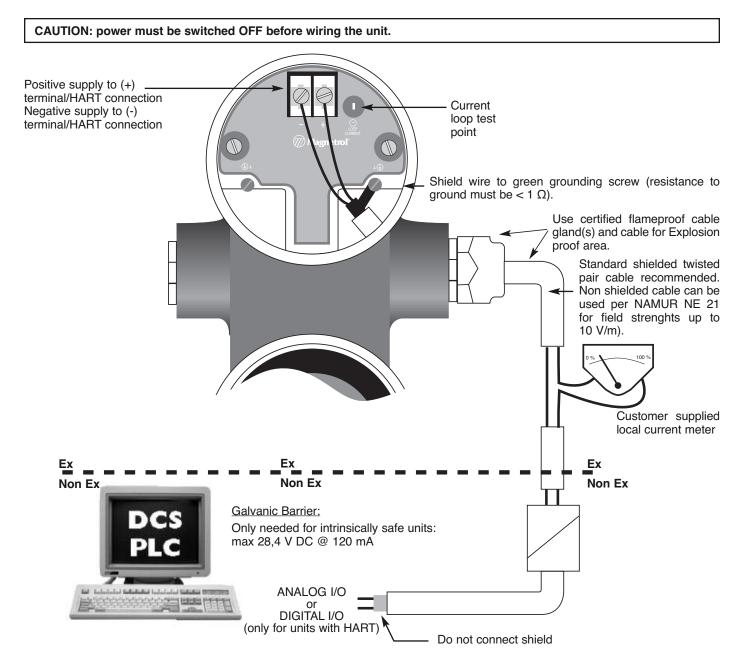
Model 7y2 Single Rod Bulk Solids Probe

2.4.5 Installing the ECLIPSE Model 706 Transmitter

The transmitter can be ordered for installation in three configurations;


- 1) As an Integral version, mounted directly on to the probe.
- 2) As a Remote version, with the transmitter separated from the probe by a distance of 84 cm (3 feet).
- 3) As a Remote version, with the transmitter separated from the probe by a distance of 366 cm (12 feet).
- NOTE Due to their extra weight, remote mounted transmitter Model Number 706-5xxx-x2x is recommended for:
 - All applications utilizing the cast 316 SS enclosure
 - Those applications having potential vibration

2.4.5.1 Integral Mount


- 1. Remove the protective plastic cap from the top of the probe. Store the cap in a safe place in case the transmitter has to be removed later.
- 2. Place the transmitter on the probe. Do not allow the gold pin in the high frequency connector or the gold socket on the probe to get dirty.
- 3. Align the universal connection at the base of the transmitter housing with the top of the probe. Only hand-tighten the connection at this time.
- 4. Rotate the transmitter to face the most convenient direction for wiring, configuration, and viewing.
- 5. When the transmitter is facing the desired direction, use a 1 1/2" wrench to tighten the universal connection on the transmitter to 60 Nm (45 ft-lbs). A torque wrench is highly recommended. This is a critical connection. DO NOT LEAVE HAND-TIGHT.
- 6. If applicable, install optional adapter for use with Model 705 probes. As this is a critical connection, a torque wrench is highly recommended to obtain 60 Nm (45 ft-lbs).

2.4.5.2 Remote Mount

- 1. Mount the transmitter/remote bracket as an assembly within 84 or 366 cm (33" or 144") of the probe. DO NOT REMOVE TRANSMITTER OR REMOTE CABLE FROM THE MOUNTING BRACKET.
- 2. Remove the protective plastic cap from the top of the probe. Store the cap in a safe place in case the transmitter has to be removed later.
- Align the universal connection at the end of the remote assembly with the top of the probe. Using a 1 1/2." wrench, tighten the universal connection on the transmitter to 60 Nm (45 ft-lbs). A torque wrench is highly recommended. This is a critical connection. DO NOT LEAVE HAND-TIGHT.

2.5 Wiring

IMPORTANT:

The shield wire should only be grounded at ONE side only. It is recommended to connect the shield to ground in the field (at the transmitter side - as shown above) but connecting in the control room is also allowed.

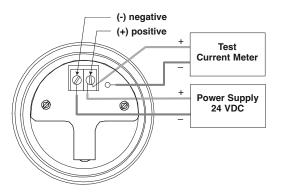
2.6 Configuration

Although the ECLIPSE Model 706 transmitter can be delivered pre-configured from the factory, it can also be easily reconfigured in the shop or at the installation using the local LCD/Keypad or PACT*ware*/DTM. Bench configuration provides a convenient and efficient way to set up the transmitter before going to the tank site to complete the installation.

Before configuring any transmitter, collect all operating parameters information (refer to Section 1.1.2).

Apply power to the transmitter and follow the step-by-step procedures below for the menu-driven transmitter display. Refer to Sections 2.6.2 and 2.6.4.

Information on configuring the transmitter using a HART communicator is given in Section 2.7, Configuration Using HART.


Refer to I/O manuals:

- BE 57-646 for information on FOUNDATION Fieldbus™ output.
- BE 57-658 for information on PROFIBUS PA output.
- 41-621 for information on Modbus output.

2.6.1 Bench Configuration =

The ECLIPSE Model 706 transmitter can be easily configured at a test bench by connecting a standard 24 VDC power supply directly to the transmitter terminals as shown in the accompanying diagram. An optional digital multimeter is shown in the event that mA current measurements are desired.

- NOTE: Current measurements taken at these test points are an approximate value. Accurate current readings should be taken with the digital multimeter directly in series with the loop.
- NOTE: When using a HART communicator for configuration, a minimum 250-ohm line load resistance is required. Refer to your HART communicator manual for additional information.
- NOTE: The transmitter can be configured without the probe. Please disregard the "No Probe" diagnostic indicator that will appear.

G.P./I.S./Explosion Proof Model

2.6.2 Menu Traversal and Data Entry

The four push buttons offer various forms of functionality for navigation and data entry.

The Model 706 user interface is hierarchical in nature, best described as a tree structure. Each level in the tree contains one or more items. Items are either menu labels or parameter names.

- Menu labels are presented in all capital letters
- Parameters are capital words

2.6.2.1 Navigating the Menu

- $\hat{\mathbf{T}}$ **UP** moves to the previous item in the menu branch.
- \clubsuit **DOWN** moves to the next item in the menu branch.
- ↔ BACK moves back one level to the previous (higher) branch item.
- Senter enters into the lower level branch or switches to the entry mode. Holding the ENTER down on any highlighted menu name or parameter will show help text for that item.

2.6.2.2 Data Selection

This method is used for selecting configuration data from a specific list.

- $\textbf{\leftarrow} \textbf{ENTER} \text{ allows modification of that selection}$
- T UP and \clubsuit DOWN to choose new data selection
- Senter to confirm selection

Use \hookrightarrow **BACK** (Escape) key at any time to abort the procedure and escape to previous branch item

2.6.2.3 Entering Numeric Data Using Digit Entry

This method is used to input numeric data, e.g., Probe Length, set 4mA and set 20mA.

Push button		Keystroke Action
0	Up	Moves up to the next highest digit (0,1,2,3,,9 or decimal point). If held down the digits scroll until the push button is released.
0	Down	Moves up to the next lowest digit (0,1,2,3,,9 or decimal point). If held down the digits scroll until the push button is released.
Ð	Back	Moves the cursor to the left and deletes a digit. If the cursor is already at the leftmost position, then the screen is exited without changing the previ- ously saved value.
0	Enter	Moves the cursor to the right. If the cursor is located at a blank character position, the new value is saved.

All numeric values are left-justified, and new values are entered from left to right. A decimal point can be entered after the first digit is entered, such that .9 is entered as 0.9.

Some configuration parameters can have a negative value. In this case, the leftmost position is reversed for the sign (either "-" for a negative value, or "+" for a positive value).

2.6.2.4 Entering Numeric Data Using Increment/Decrement

Use this method to input the following data into parameters such as Damping and Failure Alarm.

Pu	Push button		Keystroke Action	
6			Increments the displayed value. If held down the digits scroll until the push button is released. Depending on which screen is being revised, the increment amount may increase by a factor of 10 after the value has been incremented 10 times.	
Q)	Down	Decrements the displayed value. If held down the digits scroll until the push button is released. Depending on which screen is being revised, the decrement amount may increase by a factor of 10 after the value has been decremented 10 times.	
G		Back	Returns to the previous menu without changing the original value, which is immediately redis- played.	
C	>	Enter	Accepts the displayed value and returns to the previous menu.	

2.6.2.5 Entering Character Data

This method is used for parameters requiring alphanumeric character entry, such as for entering tags, etc.

Push button		Keystroke Action
O Up		Moves to the previous character (ZYXW). If held down, the characters scroll until the push button is released.
0	Down	Moves to the next item character (ABCD). If held down, the characters scroll until the push button is released.
Ð	Back	Moves the cursor back to the left. If the cursor is already at the leftmost position, then the screen is exited without changing the original tag charac- ters.
Ð	Enter	Moves the cursor forward to the right. If the cursor is at the rightmost position, then the new tag is saved.

General Menu Notes:

2.6.3 Password Protection

The ECLIPSE Model 706 transmitter has three levels of password protection to restrict access to certain portions of the menu structure that affect the operation of the system. The user password can be changed to any numerical value up to 59999. When the transmitter is programmed for password protection, a password is required whenever configuration values are changed.

User Password

The User Password allows the customer to limit access to the basic configuration parameters.

The default User Password installed in the transmitter at the factory is 0. With a password of 0, the transmitter is no longer password protected and any value in the basic user menus can be adjusted without entering a confirming password.

NOTE: If a User Password is not known or has been misplaced, the menu item New Password in the DEVICE SETUP/ADVANCED CONFIG menu displays an encrypted value representing the present password. Contact Technical Support with this encrypted password to retrieve the original User Password.

Advanced Password

Certain portions of the menu structure that contain more advanced parameters are further protected by an Advanced Password.

This password will be provided, when necessary, by Factory technical support.

Factory Password

Calibration-related and other factory settings are further protected by a Factory Password.

2.6.4 Model 706 Menu: Step-By-Step Procedure

The following tables provide a complete explanation of the software menus displayed by the ECLIPSE transmitter. The menu layout is similar between the local Keypad/LCD interface, the DD, and the DTM.

Use these tables as a step-by-step guide to configure the transmitter based on the desired measurement type from the following selections:

- Level Only
- Interface & Level
- Interface & Volume
- Level & Volume
- Flow

HOME SCREEN

The Home Screen consists of a "slide show" sequence of Measured Values screens which are rotated at 2-second intervals. Each Home Measured Value screen can present up to four information items:

- HART[®] Tag
- Measured Value

Label, Numerical Value, Units

• Status

Will be displayed as text or optionally with NAMUR NE 107 symbol

• Primary Value Bar Graph (shown in %)

The Home Screen presentation can be customized by viewing or hiding some of these items. See DISPLAY CONFIG under the DEVICE SETUP menu in Section 2.6.5 — Configuration Menu.

At left is an example of a Home Screen for a Model 706 configured for a Level Only application.

MAIN MENU

Pressing any key on the Home Screen will present the Main Menu, consisting of three basic menu labels shown in all capital letters.

- DEVICE SETUP
- DIAGNOSTICS
- MEASURED VALUES

As shown, the reverse video represents a cursor identifying the selected item, which will appear in reverse video on the LCD. The actions of the keys at this point are:

Push I	outton	Keystroke Action	
0	Up	No action as the cursor is already at the first iten n the MAIN MENU	
0	Down	Moves the cursor to DIAGNOSTICS	
Ð	Back	Moves back to HOME SCREEN, the level above MAIN MENU	
0	Enter	Presents the selected item, DEVICE SETUP	

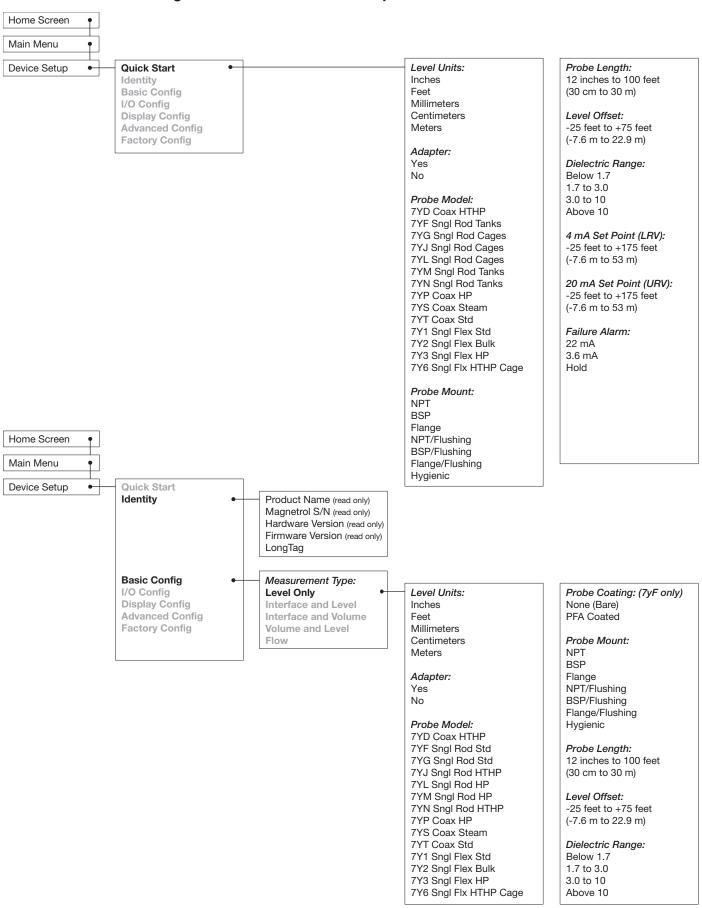
- NOTES: 1. Items and parameters that are shown in lower level menus will depend on the Measurement Type chosen. Those parameter not applicable to the present Measurement Type will be hidden.
 - 2. Holding down the Enter key when the cursor is highlighted over a parameter or menu will provide additional information about that item.

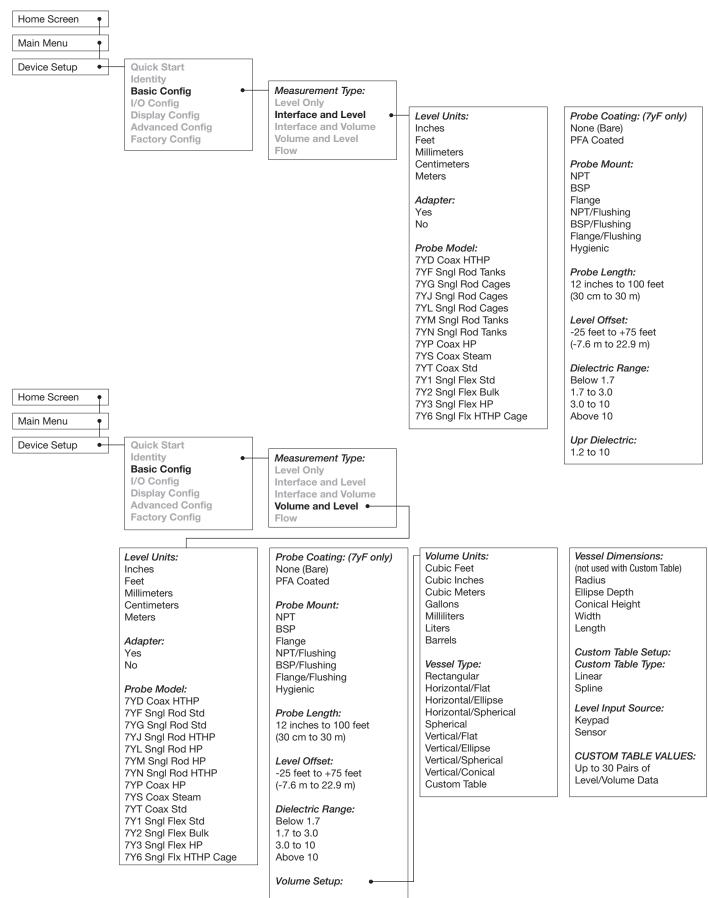
DEVICE SETUP

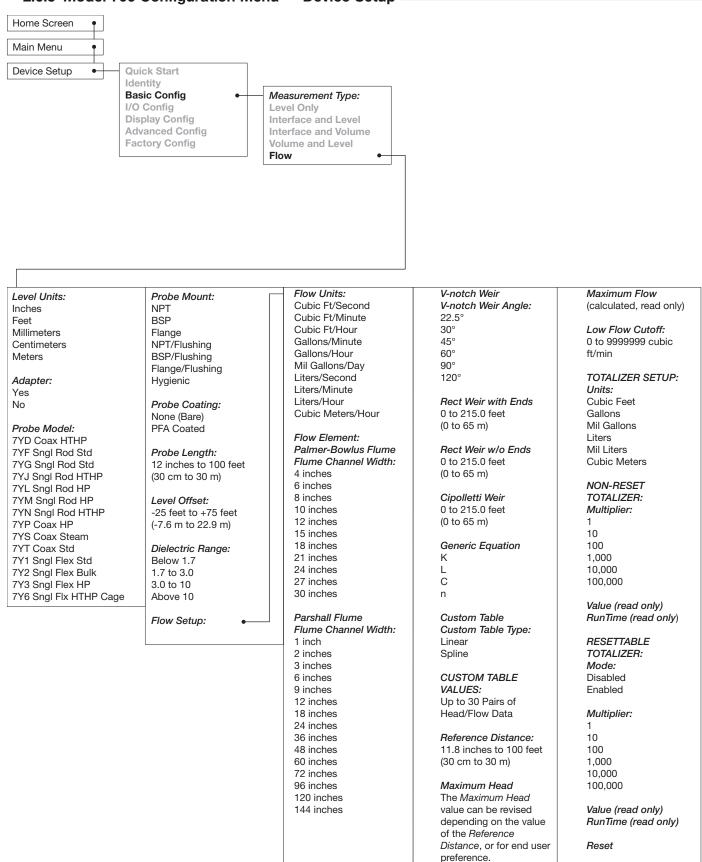
Choosing DEVICE SETUP from the MAIN MENU will result in an LCD presentation as shown at left.

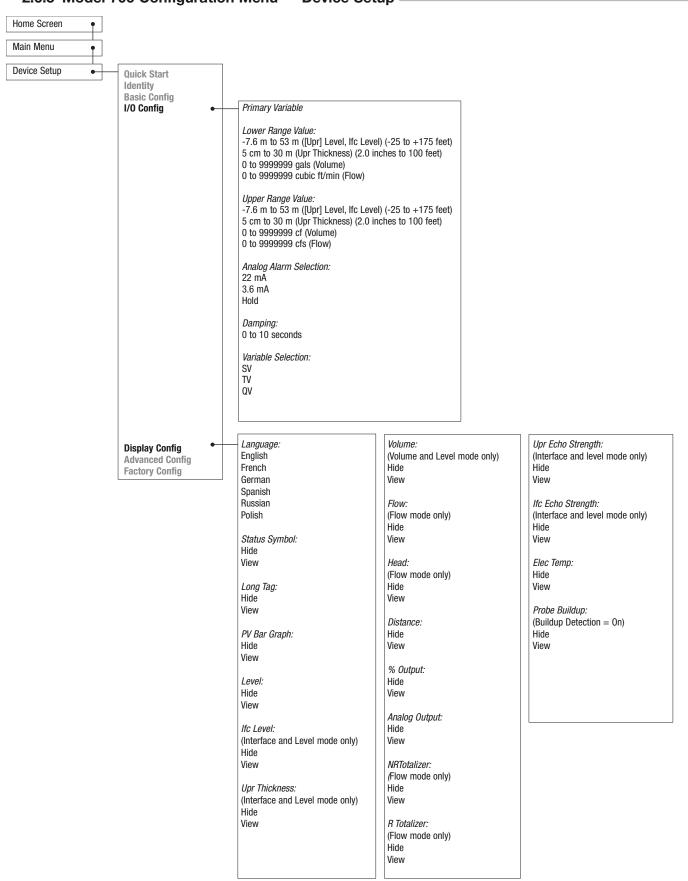
The small down arrow shown at the right hand side of the screen is the indication that more items are available below and can be accessed by pressing the DOWN key.

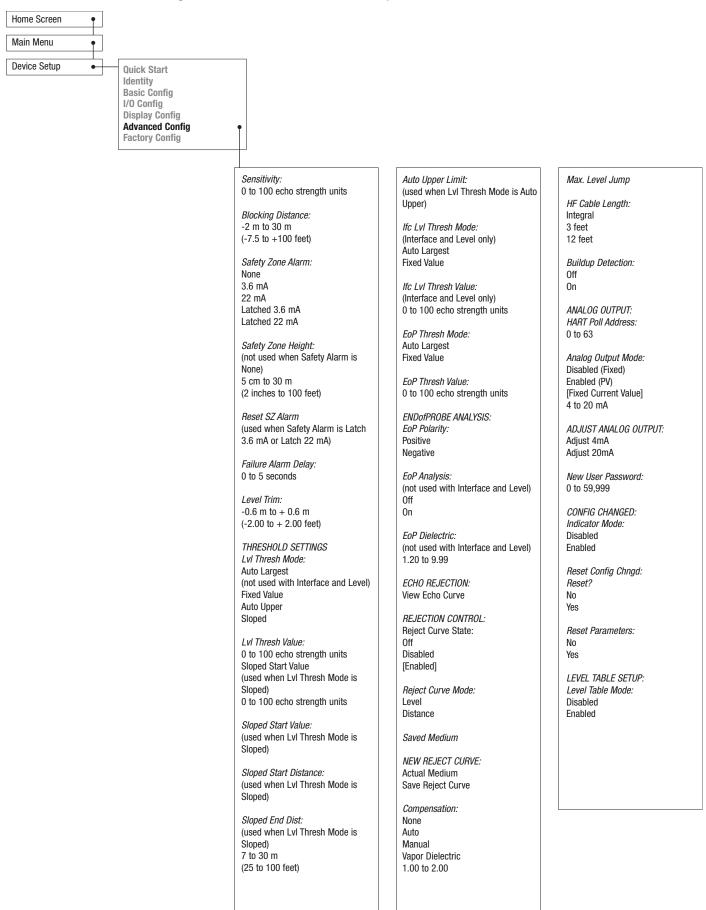
Section 2.6.5 shows the entire tree menu for the Model 706 DEVICE SETUP Menu.

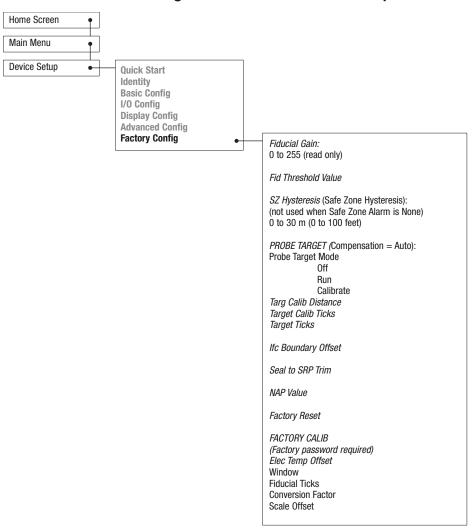

DIAGNOSTICS

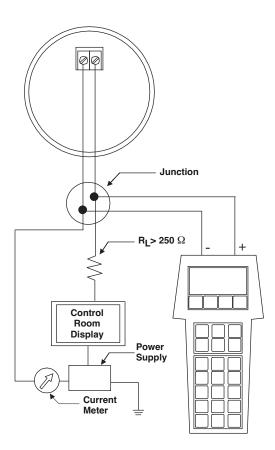

Refer to Section 3.3.4


MEASURED VALUES


Allows the user to scroll through all of the available measured values for the measurement type chosen.







2.7 Configuration Using HART

A HART (Highway Addressable Remote Transducer) remote unit, such as a HART communicator, can be used to provide a communication link to the ECLIPSE Model 706 transmitter. When connected to the control loop, the same system measurement readings shown on the transmitter are also shown on the communicator. The communicator can also be used to configure the transmitter.

The HART communicator may need to be updated to include the ECLIPSE Model 706 software (Device Descriptions). Refer to your HART Communicator Manual for update instructions.

One can also access configuration parameters using PACT*ware* and the Model 706 DTM, or using the AMS with EDDL.

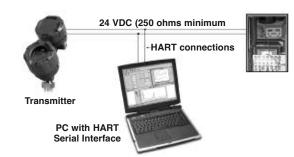
2.7.1 Connections

A HART communicator can be operated from a remote location by connecting it to a remote junction or by connecting it directly to the terminal block in the wiring compartment of the ECLIPSE transmitter.

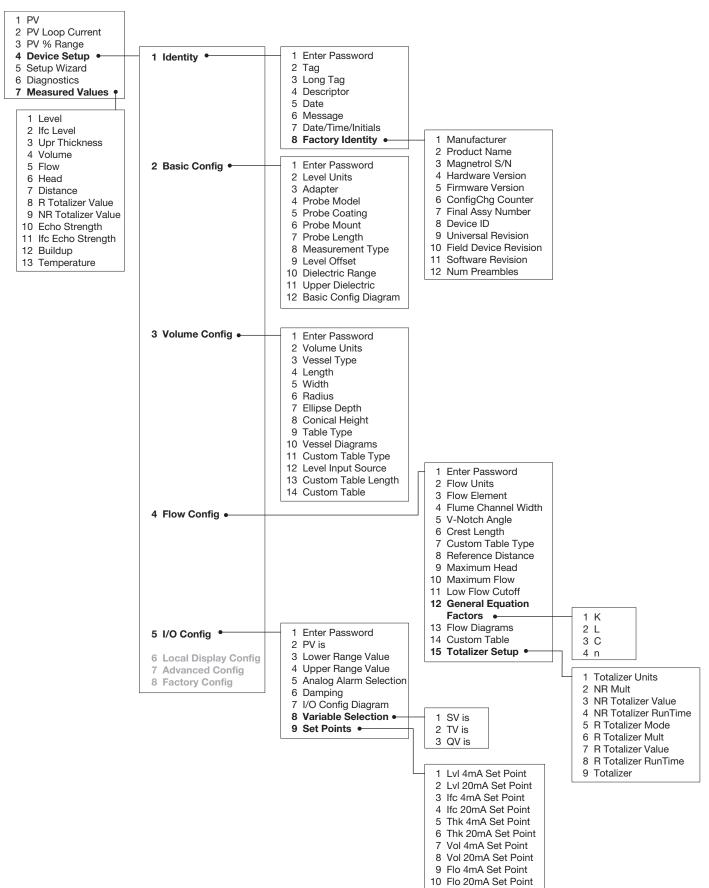
HART uses the Bell 202 frequency shift keying technique of high-frequency digital signals. It operates on the 4–20 mA loop and requires 250 Ω load resistance. A typical connection between a communicator and the ECLIPSE transmitter is shown at left.

2.7.2 HART Communicator Display =

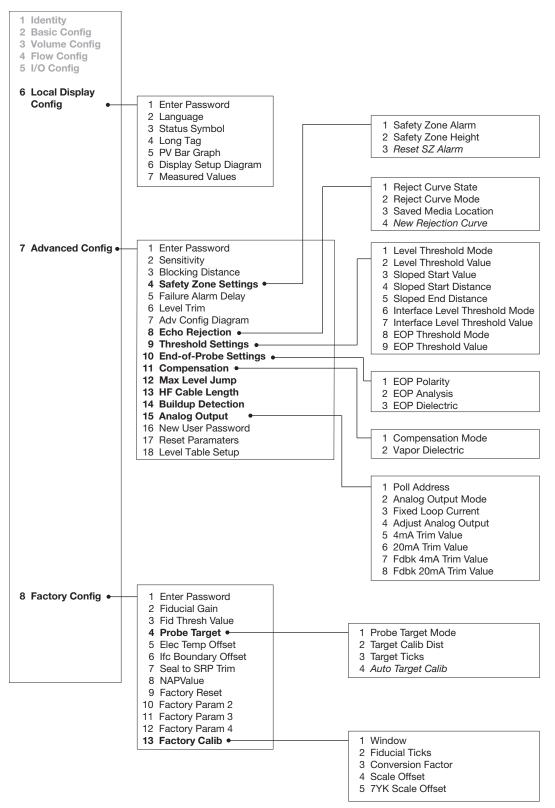
A typical communicator display is an 8-line by 21-character LCD. When connected, the top line of each menu displays the model (Model 706) and its tag number or address. For detailed operating information, refer to the instruction manual provided with the HART communicator.

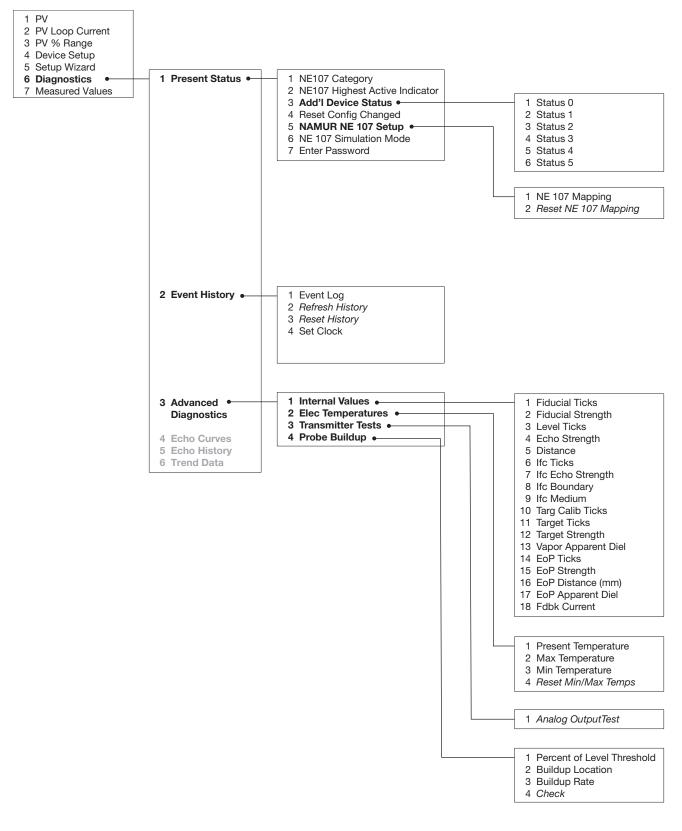

2.7.3 HART Revision Table

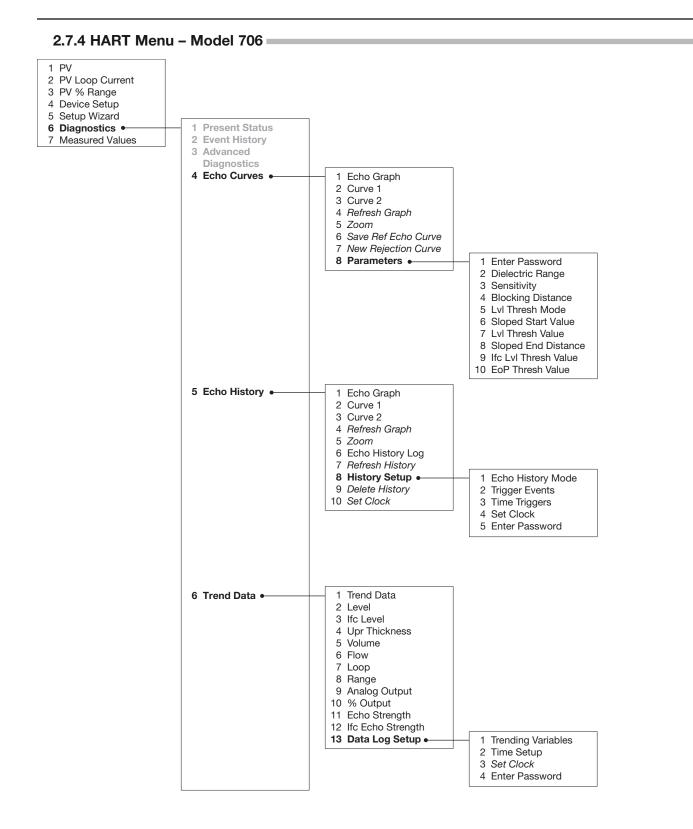
Model 706 1.x


HART Version	HCF Release Date	Compatible with 706 Software
Dev Rev 2, DD Rev 1	August 2019	Version 1.1d and later

2.7.4 HART Menu – Model 706 =


The ECLIPSE transmitter HART menu trees are shown in the following pages. Open the menu by pressing the alphanumeric key 4, then Device Setup, to display the second-level menu.


2.7.4 HART Menu - Model 706



2.7.4 HART Menu - Model 706

2.7.4 HART Menu - Model 706

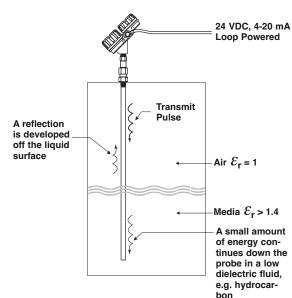
3.0 Reference Information

This section presents an overview of the operation of the ECLIPSE Model 706 Guided Wave Radar Level Transmitter, information on troubleshooting common problems, listings of agency approvals, lists of replacement and recommended spare parts, and detailed physical, functional, and performance specifications.

3.1 Transmitter Description

The ECLIPSE Model 706 is a loop-powered two-wire, 24 VDC, level transmitter based on the concept of Guided Wave Radar.

The ECLIPSE Model 706 electronics are housed in an ergonomic housing comprised of two tandem compartments angled at a 45-degree angle for ease of wiring and calibration. These two compartments connect via a watertight feed-through.


3.2 Theory of Operation

3.2.1 Guided Wave Radar

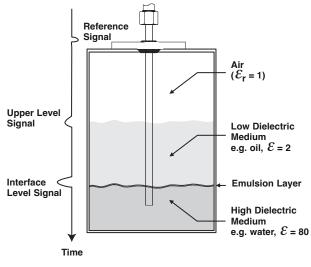
Guided Wave Radar (GWR) combines Time Domain Reflectometry (TDR), Equivalent Time Sampling (ETS) and modern low power circuitry. This synthesis of technologies brings to the level market a high-speed radar circuit (speed of light transmission). The electromagnetic pulses are propagated via a waveguide that yields a system many times more efficient than through-air radar. **3.2.2 Time Domain Reflectometry (TDR)** TDR uses pulses of electromagnetic (EM) energy to measure

TDR uses pulses of electromagnetic (EM) energy to measure distances or levels. When a pulse reaches a dielectric discontinuity (created by the surface of a process medium), part of the energy is reflected. The larger the dielectric discontinuity, the larger the amplitude (strength) of the reflection.

Although TDR is relatively new to the industrial level measurement industry, it has been used for decades in the telephone, computer, and power transmission industries. In these industries, TDR is used to successfully find wire or cable breaks and shorts. An EM pulse is sent through the wire, traveling unimpeded until it finds line damage due to a break or short. A reflection is then returned from the damaged area of the wire, enabling a timing circuit to pinpoint the location.

In the ECLIPSE transmitter, a waveguide with a characteristic impedance in air is used as a probe. When part of the probe is immersed in a material other than air, there is lower impedance due to the fact that a liquid will have a higher dielectric constant than air. When an EM pulse is sent down the probe and meets the dielectric discontinuity that occurs at the air/liquid surface, a reflection is generated.

3.2.3 Equivalent Time Sampling (ETS)


ETS (Equivalent Time Sampling) is used to measure the high speed, low power EM energy. ETS is a critical key in the application of TDR to vessel level measurement technology. The high speed EM energy 305 m/s (1000 ft/s) is difficult to measure over short distances and at the resolution required in the process industry. ETS captures the EM signals in real time (nanoseconds) and reconstructs them in equivalent time (milliseconds), which is much easier to measure with today's technology.

ETS is accomplished by scanning the waveguide to collect thousands of samples. Approximately 5 scans are taken per second; each scan gathers more than 50,000 samples.

3.2.4 Interface Detection

The ECLIPSE Model 706, when used with the appropriate probes, is a transmitter capable of measuring both an upper level and an interface level. It is required that the upper liquid have a dielectric constant between 1.4 and 10 and the two liquids have a difference in dielectric constants greater than 10. A typical application would be oil over water, with the upper layer of oil being non-conductive with a dielectric constant of approximately 2 and the lower layer of water being very conductive with a dielectric constant of approximately 80. This interface measurement can only be accomplished when the dielectric constant of the upper medium is lower than the dielectric constant of the lower medium.

As mentioned above ECLIPSE Guided Wave Radar is based upon the technology of TDR, which utilizes pulses of electromagnetic energy transmitted down a wave guide (probe). When the transmitted pulse reaches a liquid surface that has a higher dielectric constant than the air (dielectric constant of 1) in which it is traveling, the pulse is reflected and ultra high speed timing circuitry provides an accurate measure of liquid level. Even after some of the pulse is reflected from the upper surface, energy continues down the length of the probe through the upper liquid. The pulse is again reflected when it reaches the higher dielectric lower liquid (refer to figure at left). Since the propagation speed of the signal through the upper liquid is dependent on the dielectric constant of the

Interface Detection

medium in which it is traveling, the dielectric constant of the upper liquid must be known to accurately determine the interface level.

The thickness of the upper layer can be determined by knowing the time between the first and second reflections as well as the upper layer dielectric constant.

In order to properly process the reflected signals, the Model 706 is specified for those applications where the thickness of the upper layer is greater than 5 cm (2 inches). The maximum upper layer is typically limited to the length of the probe.

Emulsion Layers

As emulsion (rag) layers can decrease the strength of the reflected signal, GWR offers best performance in applications having clean, distinct layers. However, the ECLIPSE Model 706 transmitter will operate in most emulsions and tend to read the top of the emulsion layer. Contact the factory for application assistance and questions regarding emulsion layers.

3.2.5 Saturated Steam Applications

(Boilers, Feedwater Heaters, etc.)

As the temperature of a saturated steam application increases, the dielectric constant of the steam vapor space also increases. This increase in vapor space dielectric causes a delay in the GWR signal propagation as it travels down the probe, causing the liquid level to appear lower than actual.

NOTE: The measurement error associated with this propagation delay does depend on temperature and is a function of the square root of the vapor space dielectric constant. For example, with no compensation, a +230 °C (+450 °F) application would show a level error of about 5.5 %, while a +315 °C (+600 °F) application would show an error approaching 20 %!

The ECLIPSE Model 706 transmitter and Model 7yS Coaxial Steam probe provide a unique solution to this application. The effects of the changing steam conditions can be compensated for by utilizing a mechanical steam target placed inside and near the top of the Model 7yS coaxial probe.

Knowing exactly where the target is located at room temperature, and then continuously monitoring its apparent location, the vapor space dielectric can be back-calculated. Knowing the vapor space dielectric, accurate compensation of the actual liquid level reading is accomplished. This is a patented technique with two US Patents (US 6642801 and US 6867729) issued for both the mechanical target concept and the associated software algorithm.

Contact the factory for additional information relating to saturated steam applications.

3.2.6 Overfill Capability =

Although agencies like WHG or VLAREM certify Overfill proof protection, defined as the tested, reliable operation when the transmitter is used as overfill alarm, it is assumed in their analysis that the installation is designed in such a way that the vessel or side mounted cage cannot physically overfill.

However, there are practical applications where a GWR probe can be completely flooded with level all the way up to the process connection (face of the flange). Although the affected areas are application dependent, typical GWR probes have a transition zone (or possibly dead zone) at the top of the probe where interacting signals can either affect the linearity of the measurement or, more dramatically, result in a complete loss of signal.

While some manufacturers of GWR transmitters may use special algorithms to "infer" level measurement when this undesirable signal interaction occurs and the actual level signal is lost, the ECLIPSE Model 706 offers a unique solution by utilizing a concept called Overfill-Safe Operation.

An Overfill-safe probe is defined by the fact that it has a predictable and uniform characteristic impedance all the way down the entire length of the waveguide (probe). These probes allow the ECLIPSE Model 706 to measure accurate levels up to the process flange without any non-measurable zone at the top of the GWR probe.

Overfill-safe GWR probes are unique to ECLIPSE GWR, and coaxial probes can be installed at any location on the vessel. Overfill-safe probes are offered in a variety of Coaxial and Caged designs.

3.3 Troubleshooting and Diagnostics

The ECLIPSE Model 706 transmitter is designed and engineered for trouble-free operation over a wide range of operating conditions. The transmitter continuously runs a series of internal self-tests and displays helpful messages on the large graphic liquid crystal display (LCD) when attention is required. The combination of these internal tests and diagnostics messages offer a valuable proactive method of troubleshooting. The device not only tells the user what wrong, but also, and more importantly, offers suggestions on how to solve the problem.

All of this information can be obtained directly from the transmitter on the LCD, or remotely by using a HART communicator or PACT*ware* and the ECLIPSE Model 706 DTM.

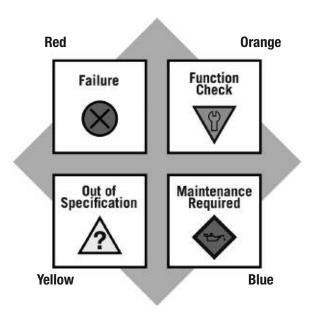
PACTware[™] PC Program

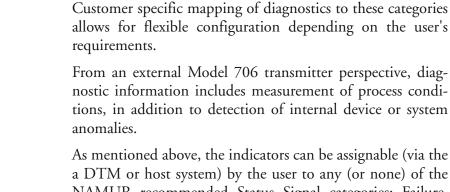
The ECLIPSE Model 706 offers the ability to perform more advanced diagnostics such as Trending and Echo Curve analysis using a PACT*ware* DTM. This is a powerful troubleshooting tool that can aid in the resolution of any diagnostic indicators that may appear.

Please refer to section 4.0 "Advanced Configuration/ Troubleshooting Techniques" for additional information.

3.3.1 Diagnostics (Namur NE 107) -

The ECLIPSE Model 706 transmitter includes an exhaustive list of Diagnostic Indicators which follow the NAMUR NE 107 guidelines.


NAMUR is an international user association of automation technology in process industries, whose goal is to promote the interest of the process industry by pooling experiences among its member companies. In doing so, this group promotes international standards for devices, systems, and technologies.


The objective of NAMUR NE 107 was essentially to make maintenance more efficient by standardizing diagnostics information from field devices. This was initially integrated via FOUNDATION Fieldbus[™], but the concept applies regardless of the communication protocol.

According to the NAMUR NE107 recommendation, "Self Monitoring and Diagnosis of Field Devices," fieldbus diagnostic results should be reliable and viewed in the context of a given application. The document recommends categorizing internal diagnostics into four standard status signals:

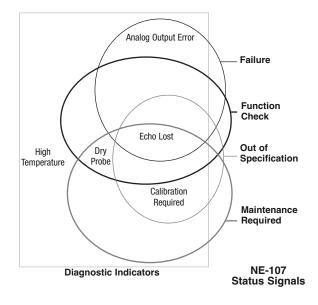
- Failure
- Function Check
- Out of Specification
- Maintenance required

These categories are shown by both symbols and colors, depending on the display capability.

a DTM or host system) by the user to any (or none) of the NAMUR recommended Status Signal categories: Failure, Function Check, Out of Specification, and Maintenance Required.

In essence, this approach ensures that the right diagnostic information is available to the right person-at the right time. In addition, it allows diagnostics to be applied, as most appropriate, for a particular plant application (such as process control engineering or asset management maintenance).

The FOUNDATION Fieldbus[™] transmitter version of the Model 706 was implemented according to the Field Diagnostics Profile, which is consistent with the objectives of NE 107.


In the FOUNDATION Fieldbus[™] version, diagnostic indicators can be mapped to multiple categories, an example is shown in the diagram at left.

In this example, "Calibration Required" is mapped to both the Out of Specification and Maintenance Required status signals, and the diagnostic indicator named "High Temperature" is mapped to none of the signals.

Indicators that are mapped to the Failure category will normally result in a current loop alarm output. The alarm state for HART transmitters is configurable as high (22 mA), Low (3.6 mA), or Hold (last value).

Users will not have the ability to unassign certain indicators from the Failure signal category as the Model 706 user interfaces will prohibit or reject such re-assignment entries). This is to ensure that current loop alarms are asserted in situations where the device is not able to provide measurements due to critical failures. (For example, if the alarm selection has not been set to Hold, or a fixed current mode is in effect.)

A default mapping of all diagnostic indicators will be applied initially, and can be re-applied through use of a reset function.

Refer to the table below for a complete listing of the Model 706 diagnostic indicators, along with their explanations, default categories, and recommended remedies.

- NOTES: 1) The remedies shown in this table can also be seen on the transmitter LCD by viewing the present status screen when the device is in a diagnostic condition.
 - 2) Those indicators showing failure as the default result in an alarm condition.

3.3.2 Diagnostic Indication Simulation

The DD and DTM allow for the ability to manipulate diagnostic indicators. Intended as a means to verify the configuration of the diagnostic parameters and connected equipment, a user can manually change any indicator to and from the active state.

3.3.3 Diagnostic Indicator Table

Below is a listing of the Model 706 diagnostic indicators, showing their priority, explanations and recommended remedies. (Priority 1 is highest priority.)

Priority	Indicator Name	Default Category	Explanation	Remedy (Context Sensitive Help)
1	Software Error	Failure	Unrecoverable error occurred in stored program.	
2	RAM Error	Failure	RAM (read/write) memory failing.	
3	ADC Error	Failure	Analog-to-digital converter failure.	Contact MAGNETROL Technical Support.
4	EEPROM Error	Failure	Non-volatile parameter storage failing.	
5	Analog Board Error	Failure	Unrecoverable hardware failure.	
6	Analog Output Error	Failure	Actual loop current deviates from commanded value. Analog output is inaccurate.	Perform Adjust Analog Output maintenance procedure.
7	Spare Indicator 1	ОК	Reserved for future use.	
8	Default Parameters		Saved parameters are set to default values.	Perform complete Device Configuration.
9	No Probe	Failure	No Probe Connected.	Attach a probe. Torque HF nut. Clean gold pin on transmitter and socket on probe. Ensure Model 705 adapter is properly secured. Contact MAGNETROL Technical Support.
10	No Fiducial	Failure	Reference signal too weak to detect.	Torque HF nut. Clean gold pin on transmitter and socket on probe. Check settings: Fiducial Gain HF Cable Length Window Increase Fid Gain. Contact MAGNETROL Technical Support.

3.3.3 Diagnostic Indicator Table -

Priority	Indicator Name	Default Category	Explanation	Remedy
11	No Echoes	Failure	No signal detected anywhere on probe.	Check settings: Dielectric Range Sensitivity EoP Thresh Value Increase Sensitivity. Lower EoP Thresh. View Echo Curve.
12	Upr Echo Lost	Failure	Signal from upper liquid too weak to detect.	Check settings: Upper Dielectric, Blocking Distance, Sensitivity Ensure Upr Level is below blocking distance. View Echo Curve.
13	Spare Indicator 2	OK	Reserved for future use.	
14	EoP Above ProbeEnd	Failure	End of Probe appears above Probe Length	Check settings: Probe Length Decrease Sensitivity Increase Blocking Distance View Echo Curve.
15	Lvl Below ProbeEnd	Failure	Level signal appears beyond Probe Length. (Possible water bottom situation)	Check settings: Probe Model, Probe Length, Level Threshold = Fixed Increase Sensitivity View Echo Curve.
16	EoP Below ProbeEnd	Failure	End of Probe appears beyond Probe Length.	Check settings: Probe Length Dielectric Range Sensitivity View Echo Curve.
17	Safety Zone Alarm	Failure	Risk of echo loss if liquid rises above Blocking Distance.	Ensure that liquid cannot reach Blocking Distance.
18	Config Conflict	Failure	Measurement type and primary variable selection parameters are inconsistent.	Confirm proper configuration. Check Measurement Type.
19	High Volume Alarm	Failure	Volume calculated from Level reading exceeds capacity of vessel or custom table.	Check settings: Vessel Dimensions, Custom Table entries
20	High Flow Alarm	Failure	Flow calculated from Distance reading exceeds capacity of flow element or custom table.	Check settings: Flow Element Reference Distance Gen Eqn Factors Custom Table entries
21	Spare Indicator 3	OK	Reserved for future use	
22	Initializing	Function Check	Distance measurement is inaccurate while internal filters are settling.	Standard start-up message. Wait for up to 10 seconds.
23	Analog Output Fixed	Function Check	Loop current not following PV. May be caused by existing alarm condition, ongoing Loop Test or Trim Loop operations.	If unexpected, check Loop Current Mode. Ensure device is not in Loop Test.
24	Config Changed	Function Check	A parameter has been modified from the User Interface.	If desired, reset Config Changed indicator in ADVANCED CONFIG menu.
25	Spare Indicator 4	OK	Reserved for future use.	
26	Spare Indicator 5	OK	Reserved for future use.	

3.3.3 Diagnostic Indicator Table

Priority	Indicator Name	Default Category	Explanation	Remedy
27	Spare Indicator 6	OK	Reserved for future use.	
28	Ramp Interval Error	Out of Spec	Internal signal timing out of limits causing inaccurate distance measurement.	Check accuracy of Level reading. Replace transmitter electronics. Contact MAGNETROL Technical Support.
29	High Elec Temp	Out of Spec	Electronics too hot. May compromise level measurement or damage instrument.	Shield transmitter from heat source or increase air circulation. Locate transmitter remotely in a cooler area.
30	Low Elec Temp	Out of Spec	Electronics too cold. May compromise level measurement or damage instrument.	Insulate transmitter. Locate transmitter remotely in a warmer area.
31	Calibration Req'd	Out of Spec	Factory calibration has been lost. Measurement accuracy may be diminished.	Return transmitter to factory for recalibration.
32	Echo Reject Invalid	Out of Spec	Echo Rejection inoperative. May report erroneous Level readings. Upr Echo may be lost near top of probe.	Save a fresh Echo Rejection Curve.
33	Spare Indicator 7	OK	Reserved for future use.	
34	Inferred Level	Out of Spec	Distance measurement calculated indirectly from probe elongation. Level reading is only approximate.	Verify Level reading. If incorrect, compare Dielectric Range against EoP Dielectric reading.
35	Adjust Analog Out	Out of Spec	Loop current is inaccurate.	Perform Adust Analog Output maintenance procedure.
36	Totalizer Data Lost	Out of Spec	Non-volatile Totalizer Data storage failing.	Contact MAGNETROL Technical Support.
37	No Probe Target	Out of Spec	Not actively compensating	Check settings: Probe Model Sensitivity
38	Low Supply Voltage	Out of Spec	Loop current may be incorrect at higher values. Analog output is inaccurate.	Verify loop resistance. Replace loop power supply.
39	Dry Probe	OK	No liquid is contacting probe. Level at unknown distance beyond probe.	If unexpected, verify proper probe length for application.
40	Bad Target Location	Maintenance Required	Incorrect steam target location.	Contact MAGNETROL Technical Support.
41	Low Echo Strength	Maintenance Required	Risk of Echo Lost due to weak signal.	Check settings: Dielectric Range Sensitivity View Echo Curve.
42	Low Ifc Echo Str	Maintenance Required	Risk of Interface Echo Lost due to weak signal.	Check settings: Dielectric Range Sensitivity View Ifc Echo Curve.
43	Max Jump Exceeded	Maintenance Required	Transmitter has jumped to an echo at location that exceeds "Max Level Jump" from previous echo location.	Check settings: Dielectric Range Sensitivity View Echo Curve.
44	Spare Indicator 10	ОК	Reserved for future use.	
45	Sequence Record	OK	A Sequence Record number has been stored in Event Log.	If desired, report Sequence Record number to factory.

The ECLIPSE Model 706 offers the ability to do Trending and Echo Curve analysis via the local graphical LCD or by using PACTware and the Model 706 DTM. The Model 706 DTM is a power troubleshooting tool that can aid in the resolution of some of the Diagnostic Indicators shown above.

3.3.4 Diagnostic Help

Selecting DIAGNOSTICS from the MAIN MENU presents a list of five ITEMS from the top level of the DIAGNOS-TICS tree.

When Present Status is highlighted, the highest MAGNETROL priority active diagnostic indicator (numerically lowest in Table 3.3.3) is displayed on the bottom LCD line, which is "OK" as shown at left. Pressing the ENTER key moves the active diagnostic indicator to the top line outdented and presents in the lower area of the LCD a brief explanation of and possible remedies for the indicated condition. A blank line separates the explanation from the remedies. Additional active diagnostic indicators, if any, appear with their explanations in descending priority order. Each additional active indicator name-explanation pair is separated by a blank line from the one above.

If the explanation and remedy text (and additional nameexplanation pairs) exceeds the available space, a \clubsuit appears in the rightmost column of the last line indicating more text below. In this situation, the DN key scrolls text up one line at a time. Similarly, while text exists above the upper line of the text field, a \widehat{T} appears in the rightmost column of the top (text) line. In this situation, the UP key scrolls the text down one line at a time. Otherwise the DN and UP keys are inoperative. In all cases the ENT or DEL key reverts to the previous screen.

When the transmitter is operating normally and the highlight cursor is positioned on Present Status, the bottom LCD line displays "OK" because no diagnostic indicators are active.

EVENT HISTORY – This menu displays the parameters related to diagnostic event logging.

ADVANCED DIAGNOSTICS – This menu displays parameters related to some of the advanced diagnostics available within the Model 706.

INTERNAL VALUES – Displays read-only internal parameters.

ELEC TEMPERATURES – Displays temperature information as measured in the potted module in degrees F or C.

TRANSMITTER TESTS – Allows the user to manually set the output current to a constant value. This is a method for the user to verify operation of the other equipment in the loop.

ECHO CURVES – This menu allows the user to display the various Echo Curves on the LCD.

ECHO HISTORY SETUP – The Model 706 contains the unique and powerful feature that allows waveforms to be automatically captured based on Diagnostic Events, Time or both. This menu contains those parameters that configure that feature.

Eleven (11) waveforms can be saved directly into the transmitter.

- Nine (9) Troubleshooting Curves
- One (1) Echo Rejection Curve
- One (1) Reference Curve

TREND DATA – A 15-minute trend of the PV can be displayed on the LCD.

3.3.5 Troubleshooting Application Issues

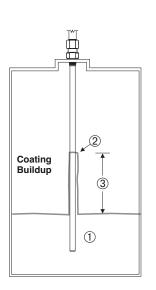
There can be numerous reasons for application-related issues. Media buildup on the probe is covered here.

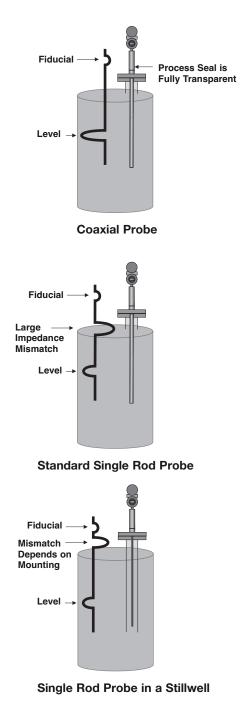
Media buildup on the probe is typically not a problem in most cases—ECLIPSE circuitry works very effectively. Media buildup should be viewed as two types:

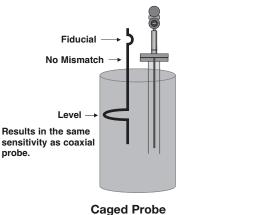
- Continuous Film Coating
- Bridging

3.3.5.1 Model 706 (Single Rod Probe)

The Model 706 and Single Rod probe were designed to operate effectively in the presence of media building up. Some expected error may be generated based upon the following factors:


- 1. Dielectric of the media that created the coating
- 2. Thickness of the coating
- 3. Amount (length) of the coating above the present level


Although more immune to thick, viscous, buildup, performance of Single Rod GWR probes is always dependent on the installation and application. The electromagnetic field surrounding a single rod probe makes it more vulnerable to influence from objects in the vicinity of the probe.


NOTE: It is important to note that this influence from the installation/application also depends on the configuration of the transmitter. Those devices configured with lower gain will be less affected by external objects.

Nozzles

Due to the impedance mismatch that takes place at the end of a nozzle, they can create false echoes that can cause diagnostic indicators and/or errors in measurement.

(waveform is similar to that of a coaxial probe)

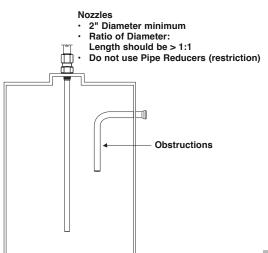
As mentioned above, by virtue of the pure physics of the technology, all single rod GWR probes are influenced by the application and installation. Mismatches in impedance along the length of the probe, whether they be expected (liquid level) or unexpected (metal in close proximity), will result in reflections.

To better illustrate this, a comparison between a coaxial probe and single rod probe mounted in the same application is shown at left.

Since the outer tube of the coaxial probe is grounded, there are no proximity affects and there is no influence from the nozzle. The only reflections along the length of the probe are expected. Those being the fiducial (reference signal) and the return signal from the process.

On the other hand, a single rod probe mounted in the exact same nozzle will have additional (unwanted) reflections where the probe enters and exits the nozzle. These reflections are a result of the impedance changes that occur at those points:

• The large reflection is due to the impedance developed between the rod and nozzle ID as compared to the impedance developed between the rod and the tank ID. (The larger the nozzle ID, the smaller the reflection).


One way to eliminate the reflection at the bottom of the nozzle is to use a continuous stillwell in conjunction with a caged GWR probe. In doing so, there will be no impedance changes all the way down the probe.

Refer to Section 3.2.6 for a discussion on overfill-capable probes for suggestions on how to eliminate these unwanted single rod reflections. MAGNETROL is unique in the fact that we offer a special caged probe that, when installed properly, has no unwanted reflections.

Obstructions

Metallic obstructions in the vicinity of a single rod probe can also affect the performance. If the level reading repeatedly locks on to a specific level higher than the actual level, it may be caused by a metallic obstruction. Obstructions in the vessel (e.g., pipes, ladders) that are located close to the probe may cause the instrument to show them as level.

Refer to the Probe Clearance Table for recommended clearance distances. The distances shown in this table can be dramatically reduced by utilizing the Echo Rejection feature (within the transmitter or) in PACT*ware* and the ECLIPSE Model 706 DTM.

NOTE: Use caution when rejecting large negative going signals as the negative going level signal will also be partially rejected at this position and can be lost.

PROBE CLEARANCE TABLE

Distance to Probe	Acceptable Objects
<15 cm (6")	Continuous, smooth, parallel conductive surface, for example a metal tank wall; important that probe does not touch wall
>15 cm (6")	<25 mm (1") diameter pipe and beams, ladder rungs
>30 cm (12")	<75 mm (3") diameter pipe and beams, concrete walls
>46 cm (18")	All remaining objects

3.4 **Configuration Information**

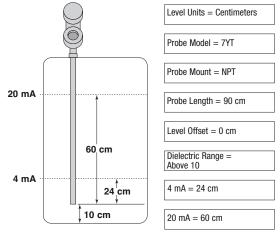
This section is intended to offer additional configurationrelated details with respect to some of the parameters shown in the Menu in Section 2.6.

3.4.1 Level Offset Description —

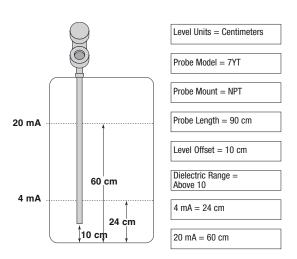
The parameter referred to as Level Offset in the ECLIPSE Model 706 DEVICE SETUP/BASIC CONFIG menu is defined as the desired level reading when liquid surface is at the tip of the probe.

The ECLIPSE Model 706 transmitter is shipped from the factory with Level Offset set to 0. With this configuration, all measurements are referenced from the bottom of the probe. See Example 1.

Example 1 (Level Offset = 0 as shipped from factory):

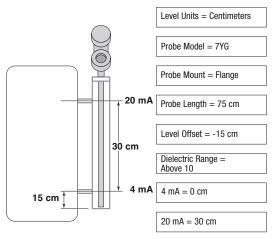

Application calls for a 90-cm Model 7yT coaxial probe with an NPT process connection. The process medium is water with the bottom of the probe 10 cm above the bottom of the tank.

The user wants the 4 mA Set Point (LRV) at 24 cm and the 20 mA Set Point (URV) at 60 cm as referenced from the bottom of the probe.


In those applications in which it is desired to reference all measurements from the bottom of the vessel, the value of Level Offset should be changed to the distance between the bottom of the probe and the bottom of the vessel as shown in Example 2.

Example 2:

Application calls for a 90-cm Model 7yT coaxial probe with an NPT process connection. The process medium is water with the bottom of the probe 10 cm above the bottom of the tank.



Example 1

Example 2

BE 57-606.9 ECLIPSE Model 706 Guided Wave Radar Transmitter

Example 3

The user wants the 4 mA Set Point (LRV) at 24 cm and the 20 mA Set Point (URV) at 60 cm as referenced from the bottom of the tank.

When the ECLIPSE transmitter is mounted in a chamber/bridle, it is usually desirable to configure the unit with the 4 mA Set Point (LRV) at the lower process connection and the 20 mA Set Point (URV) at the upper process connection. The measuring range then becomes the center-tocenter dimension. In this case, a negative Level Offset needs to be entered. In doing so, all measurements are then referenced at a point up on the probe, as shown in Example 3.

Example 3:

Application calls for a 75-cm Model 7yG caged-coaxial flanged probe measuring water in a chamber with the bottom of the probe extending 15 cm below the lower process connection. The user wants the 4 mA point to be 0 cm at the bottom process connection and the 20 mA point to be 30 cm at the top process connection.

3.4.2 End-of-Probe Analysis

A new addition to the Model 706 ECLIPSE transmitter is a feature called End-of-Probe Analysis (EoPA).

Located in the DEVICE SETUP/ADVANCED CONFIG Menu, this feature is patterned after the "Tank-Bottom Following" algorithms of the early Non-Contact radar transmitters. When the return signal from the level is lost, this feature allows the Model 706 transmitter to infer level measurement based on the apparent location of the end-ofprobe (EoP) signal.

Due to the fact that the propagation of the GWR signal is affected by the dielectric constant of the medium in which it is traveling, signals along the probe are delayed in proportion to the dielectric constant. By monitoring the location of the (delayed) EoP signal and knowing the dielectric constant of the medium, the level signal can be back-calculated, or inferred.

The End-of-Probe Analysis feature is located in the Advanced Config menu and requires an Advanced Password to activate. Several additional parameters will need to be configured for optimum performance.

NOTE: The accuracy of this level measurement mode is not that of detecting true product level, and can vary depending on the process. MAGNETROL recommends that this feature be used only as last resort for measuring levels in those rare applications in which the level signals are inadequate, even after the common troubleshooting techniques of gain increase and threshold adjustment are implemented.

Please refer to section 4.0 "Advanced Configuration/ Troubleshooting Techniques" or contact MAGNETROL Technical Support for additional instructions.

3.4.3 Echo Rejection

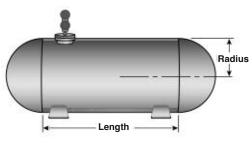
Due to the fact that GWR transmitters are less susceptible to obstructions in a vessel (as compared with Non-Contact Radar transmitters), early versions of the ECLIPSE Model 705 transmitters did not have Echo Rejection capability.

However, due to our vast experience in the field, we have found that there are (albeit rare) occasions when it is desirable to have the ability to "ignore" unwanted signals along the probe.

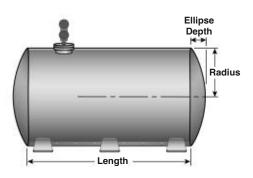
The Model 706 transmitter Echo Rejection feature is located in the DEVICE SETUP/ADVANCED CONFIG menu, and requires an Advanced Password to activate. It is highly recommended that this feature be used with the waveform capture capability of the Model 706 DTM and PACT*ware*TM.

Refer to Section 4.0 "Advanced Configuration/Troubleshooting Techniques" or contact MAGNETROL Technical Support for additional instructions.

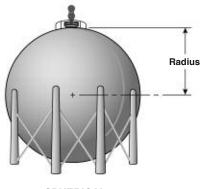
3.4.4 Volumetric Capability

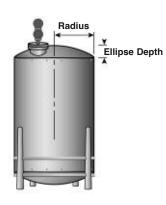

Selecting Measurement Type = Volume and Level allows the Model 706 transmitter to measure volume as the Primary Measured Value.

3.4.4.1 Configuration using built-in Vessel Types


The following table provides an explanation of each of the System Configuration parameters required for volume applications that use one of the nine Vessel Types.

Configuration Parameter	Explanation	
Volume Units	A selection of Gallons (factory default Volume Unit), Milliliters, Liters, Cubic Feet, or Cubic Inches, i provided.	
Vessel Type	Select either Vertical/Flat (factory default Vessel Type), Vertical/Elliptical, Vertical/Spherical, Vertical/Conical, Custom Table, Rectangular, Horizontal/Flat, Horizontal/Elliptical, Horizontal/Spherical, or Spherical.	
	Note: Vessel Dims is the next screen only if a specific Vessel Type was selected. If Custom Table was selected. Refer to section 3.4.4.2 to select the Cust Table Type and Cust Table Vals.	
Vessel Dims	See the vessel drawings on the following page for relevant measuring areas.	
Radius	Used for all Vessel Types with the exception of Rectangular.	
Ellipse Depth	Used for Horizontal and Vertical/Elliptical vessels.	
Conical Height	Used for Vertical/Conical vessels.	
Width	Used for Rectangular vessels.	
Length	Used for Rectangular and Horizontal vessels.	


Vessel Types


HORIZONTAL/SPHERICAL

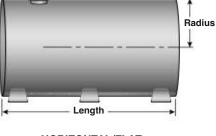
HORIZONTAL/ELLIPTICAL

SPHERICAL

VERTICAL/SPHERICAL

Width Length

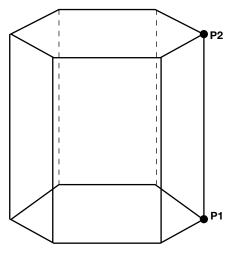
RECTANGULAR

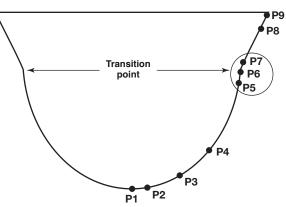


VERTICAL/ELLIPTICAL

VERTICAL/FLAT

VERTICAL/CONICAL


HORIZONTAL/FLAT


3.4.4.2 Configuration using Custom Table

If none of the nine *Vessel Types* shown can be used, a *Custom Table* can be created. A maximum of 30 points can be used to establish the level to volume relationship. The following table provides an explanation of each of the System Configuration parameters for volume applications where a Custom Table is needed.

Configuration Parameter	Explanation (Custom Volumetric Table)	
Volume Units A selection of Gallons (factory default Volume Unit), Milliliters, Liters, Cull Cubic Inches, is provided.		
Vessel Type Select Custom Table if none of the nine Vessel Types can be used.		
Cust Table Type	The <i>Custom Table</i> points can be a Linear (straight line between adjacent points) or Spline (can be a curved line between points) relationship. See below drawing for more information.	
Cust Table Vals	A maximum of 30 points can be used in building the <i>Custom Table</i> . Each pair of values will have a level (height) in the units chosen in the <i>Level Units</i> screen, and the associated volume for that level point. The values must be monotonic, i.e. each pair of values must be greater than the previous level/volume pair. The last pair of values should have the highest level value and volume value associated with the level in the vessel.	

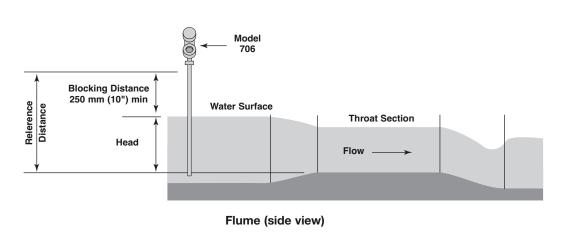
LINEAR

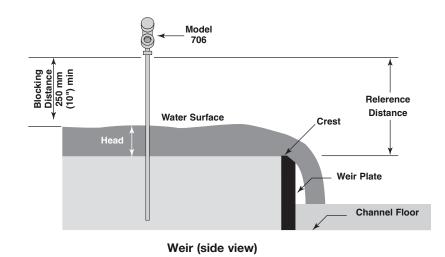
Use where walls are not perpendicular to base.

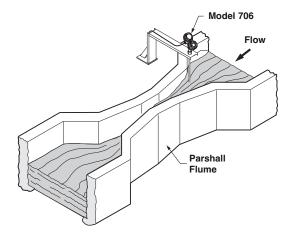
Concentrate at least two points at beginning (P1) and end (P9); and three points at either side of transition points.

SPLINE

3.4.5 Open Channel Flow Capability


Selecting Measurement Type = Flow allows the Model 706 transmitter to measure flow as the Primary Measured Value.


Open channel flow is performed by using the ECLIPSE Model 706 to measure the Head in a hydraulic structure. The hydraulic structure is the primary measuring element, of which the two most common types are weirs and flumes.


Since the primary element has a defined shape and dimensions, the rate of flow through the flume or over the weir is related to the Head at a specified measurement location.

The ECLIPSE Model 706 is the secondary measuring device, which measures the Head of the liquid in the flume or weir. Open channel flow equations stored in the transmitter firmware convert the measured Head into units of flow (vol-ume/time).

NOTE: Proper positioning of the Model 706 should be per the recommendation of the flume or weir manufacturer.

Open Channel Flow Measurement Parshall Flume

3.4.5.1 Configuration using Flume/Weir Equations

The following table provides an explanation of each of the System Configuration parameters required for open channel flow applications using one of the Flow Elements that are stored in the firmware.

Configuration Parameter	Explanation
Flow Units	A selection of Gallons/Minute (factory default <i>Flow Unit</i>), Gallons/Hour, Mil Gallons/Day, Liters/Second, Liters/Minute, Liters/Hour, Cubic Meter/Hour, Cubic Ft/Second, Cubic Ft/Minute, and Cubic Ft/Hour are provided.
Flow Element	Select one of the following primary <i>Flow Elements</i> that are stored in the firmware: Parshall flume sizes of 1 ", 2 ", 3 ", 6 ", 9 ", 12 ", 18 ", 24 ", 36 ", 48 ", 60 ", 72 ", 96 ", 120 " and 144 ". Palmer-Bwls (Palmer-Bowlus) flume sizes of 4 ", 6 ", 8 ", 10 ", 12 ", 15 ", 18 ", 21 ", 24 ", 27 " and 30 ". V-notch weir sizes of 22.5 °, 30 °, 45 °, 60 °, 90 ° and 120 °. Rect with Ends (Rectangular Weir with End Contractions), Rect w/o Ends (Rectangular Weir without End Contractions), and Cipoletti weir. Custom Table (refer to section 3.4.5.3) can be selected if none of the stored <i>Flow Elements</i> can be used. The table can be built with a maximum of 30 points. The Model 706 also has the capability of using a Generic Equation (refer to section 3.4.5.2) for flow calculation.
Weir Crest Length	The Weir Crest Length screen only appears when the chosen Flow Element is Cipoletti or one of the Rectangular weirs. Input this length in the user-selected level units.
Flume Channel Width	Allows for entry of the width of the palmer bowlus flume.
V-Notch Weir Angle	Only appears when flow element is V-Notch weir. It allows for the entry of angle of the V-Notch weir.
Reference Dist	The <i>Reference Distance</i> is measured from the sensor reference point to the point of zero flow in the weir or flume. This must be measured very accurately in the user-selected level units.
Maximum Head	<i>Maximum Head</i> is the highest liquid level (Head) value in the flume or weir before the flow equation is no longer valid. The <i>Maximum Head</i> is expressed in the user-selected <i>Level Units.</i> The Model 706 will default to the largest <i>Maximum Head</i> value that is allowed for any given flume or weir. The <i>Maximum Head</i> value can be revised depending on the value of the <i>Reference Distance</i> , or for end user preference.
Maximum Flow	<i>Maximum Flow</i> is a read-only value that represents the flow value corresponding to the <i>Maximum Head</i> value for the flume or weir.
Low Flow Cutoff	The <i>Low Flow Cutoff</i> (in user-selected level units) will force the calculated flow value to zero whenever the <i>Head</i> is below this point. This parameter will have a default and minimum value of zero.

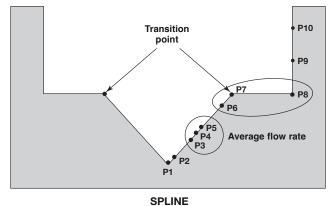
3.4.5.2 Configuration using Generic Equation

The following table provides an explanation of each of the System Configuration parameters for Open channel flow applications using the Generic Equation.

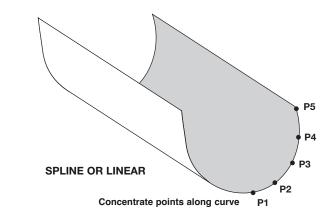
Configuration Parameter	Explanation (Open Channel Flow — using the Generic Equation)
Flow Units	A selection of Gallons/Minute (factory default <i>Flow Unit</i>), Gallons/Hour, Mil Gallons/Day, Liters/Second, Liters/Minute, Liters/Hour, Cubic Meter/Hour, Cubic Ft/Second, Cubic Ft/Minute, and Cubic Ft/Hour are provided.
Flow Element	Select one of the following primary <i>Flow Elements</i> that are stored in the firmware: Parshall flume sizes of 1" , 2" , 3" , 6" , 9" , 12" , 18" , 24" , 36" , 48" , 60" , 72" , 96" , 120" and 144" . Palmer-Bwls (Palmer-Bowlus) flume sizes of 4" , 6" , 8" , 10" , 12" , 15" , 18" , 21" , 24" , 27" and 30" . V-notch weir sizes of 22.5° , 30° , 45° , 60° , 90° and 120° . Rect with Ends (Rectangular Weir with End Contractions), Rect w/o Ends (Rectangular Weir without End Contractions), and Cipoletti weir. Custom Table (refer to section 3.4.5.3) can be selected if none of the stored <i>Flow Elements</i> can be used. The table can be built with a maximum of 30 points. The Model 706 also has the capability of using a Generic Equation for flow calculation. See example below.
Generic Eqn Factors	Generic Equation is a discharge flow equation in the form of $Q = K(L-CH)H^n$, where $Q = flow$ (Cu Ft/Second), $H = Head$ (Feet), $K = a$ constant, and L, C and n are user input factors that depend on which <i>Flow Element</i> is being used. Make sure the flow equation is in the form of $Q = K(L-CH)H^n$, and proceed to enter the values of K,L,C,H and n. See example below.
	NOTE: The Generic Equation parameters must be entered in Cu Ft/Second units . The resultant flow is converted by the Model 706 into whatever Flow Units are selected above. See example below.
Reference Dist	The <i>Reference Distance</i> is measured from the sensor reference point to the point of zero flow in the weir or flume. This must be measured very accurately in the user-selected level units.
Maximum Head	<i>Maximum Head</i> is the highest liquid level (Head) value in the flume or weir before the flow equation is no longer valid. The <i>Maximum Head</i> is expressed in the user-selected level units. The Model 706 will default to the largest <i>Maximum Head</i> value that is allowed for any given flume or weir. The <i>Maximum Head</i> value can be revised depending on the value of the <i>Reference Distance</i> , or for end user preference.
Maximum Flow	<i>Maximum Flow</i> is a read-only value that represents the flow value corresponding to the <i>Maximum Head</i> value for the flume or weir.
Low Flow Cutoff	The <i>Low Flow Cutoff</i> (in user-selected level units) will force the calculated flow value to zero whenever the <i>Head</i> is below this point. This parameter will have a default and minimum value of zero.

Generic Equation Example (using equation for an 8' rectangular weir w/ end contractions)			
$Q = Cubic Ft/Second flow rate \qquad L = 8' (weir crest length in feet) \qquad H = Head value$			
K = 3.33 for Cubic Ft/Second unitsC = 0.2 (constant)		n = 1.5 as an exponent	

Using the factors above the equation becomes:


$$Q = K(L-CH)H^n$$

Q = 3.33 (8-0.2H) H^{1.5}


The discharge flow value for a Head value of three feet becomes 128.04 **Cubic Ft/Second**. If GPM was selected for the Flow Units, the Model 706 Measured Values screen would display this value converted to 57,490 GPM.

3.4.5.3 Configuration using Custom Table

- Concentrate points as follows:
 A. At least two points at beginning (P1 and P2);
 B. At least two points at end (P9 and P10)
 C. Three points at approximate average flow rate (for example, P3, P4, P5); and at transition point (P7) and points on either side (P6, P8).

The following table provides an explanation of each of the System Configuration parameters for open channel flow applications using the Custom Table.

Configuration Parameter	Explanation (Open Channel Flow — Custom Table)
Flow Units	A selection of Gallons/Minute (factory default <i>Flow Unit</i>), Gallons/Hour, Mil Gallons/Day, Liters/Second, Liters/Minute, Liters/Hour, Cubic Meters/Hour, Cubic Ft/Second, Cubic Ft/Minute, and Cubic Ft/Hour are provided.
Select one of the following primary Flow Elements that are stored in Parshall flume sizes of 1", 2", 3", 6", 9", 12", 18", 24", 36", 48", 60 120" and 144". Palmer-Bwls (Palmer-Bowlus) flume sizes of 4", 6", 15", 18", 21", 24", 27" and 30". V-notch weir sizes of 22.5°, 30°, 48 120°. Rect with Ends (Rectangular Weir with End Contractions), Re (Rectangular Weir without End Contractions), and Cipoletti weir. Cu below) can be selected if none of the stored Flow Elements can be 	
Custom TableThe Custom Table points can be a Linear (straight line between adjacent points)Spline (can be a curved line between points) relationship. Refer to the drawing above for more information.	
Cust Table Vals	A maximum of 30 points can be used in building the <i>Custom Table</i> . Each pair of values will have a Head (height) in the units chosen in the <i>Level Units</i> screen, and the associated flow for that Head value. The values must be monotonic, i.e., each pair of values must be greater than the previous Head/flow pair. The last pair of values should have the highest Head value (usually the <i>Maximum Head</i> value) and the flow associated with that Head value.
Reference Dist	The <i>Reference Distance</i> is measured from the sensor reference point to the point of zero flow in the weir or flume. This must be measured very accurately in the user-selected level units.
Maximum Head	<i>Maximum Head</i> is the highest liquid level (Head) value in the flume or weir before the flow equation is no longer valid. The <i>Maximum Head</i> is expressed in the user- selected <i>Level Units</i> . The Model 706 will default to the largest <i>Maximum Head</i> value that is allowed for any given flume or weir. The <i>Maximum Head</i> value can be revised depending on the value of the <i>Reference Distance</i> , or for end user preference.
Maximum FlowMaximum Flow is a read-only value that represents the flow value corres to the Maximum Head value for the flume or weir.	
Low Flow CutoffThe Low Flow Cutoff (in user-selected level units) will force the calculate value to zero whenever the Head is below this point. This parameter will a default and minimum value of zero.	

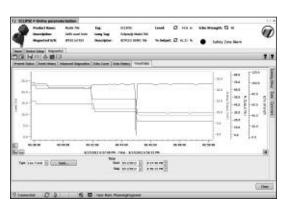
3.4.6 Reset Function

A parameter labeled "Reset Parameter" is located at the end of the DEVICE SETUP/ADVANCED CONFIG menu. In the event a user gets confused during configuration or advanced troubleshooting, this parameter gives the user the ability to reset the Model 706 transmitter configuration.

Unique to the Model 706 transmitter is the ability for MAGNETROL to fully "pre-configure" devices to customer requests. For that reason, the Reset function will return the device back to the state **at which it left the factory**.

It is recommended that MAGNETROL Technical Support be contacted as the Advanced User password will be required for this reset.

3.4.7 Additional Diagnostic/Troubleshooting Capabilities —


3.4.7.1 Event History

As a means for improved troubleshooting capability, a record of significant diagnostic events is stored with time and date stamps. A real time on board clock (which must be set by the operator), will maintain the current time.

3.4.7.2 Context-sensitive Help

Descriptive information relevant to the highlighted parameter in the menu will be accessible via the local display and remote host interfaces. This will most often be a parameter-related screen, but could also be information about menus, actions (for example, Loop [Analog Output] Test, resets of various types), diagnostic indicators, etc.

For example: Dielectric Range — Selects the range bounding the dielectric constant of the medium in vessel. For interface measurement mode, it selects the range bounding the dielectric constant of the lower liquid medium. Some ranges may not be selectable depending on the probe model.

3.4.7.3 Trend Data

Another new feature to the Model 706 is the the ability to log several measured values (selectable from any of the primary, secondary, or supplemental measured values) at a configurable rate (for example, once every five minutes) for a period ranging from several hours to a number of days (depending on the configured sample rate and number of values to be recorded). The data will be stored in non-volatile memory in the transmitter with date and time information for subsequent retrieval and visualization using the associated Model 706 DTM.

3.5 Agency Approvals

CE

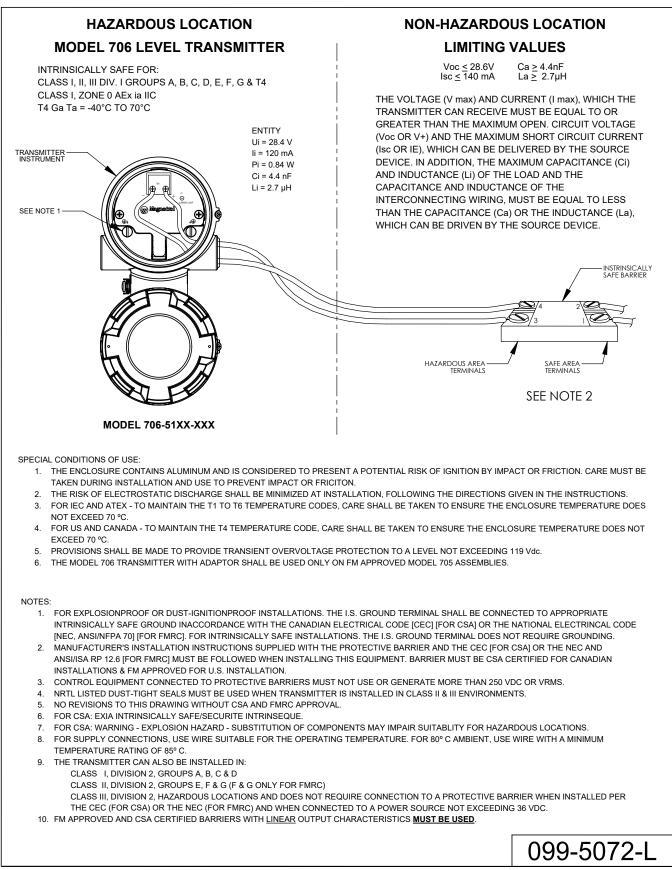
These units are in compliance with the EMC-directive 2014/30/EU, the PED-directive 2014/68/EU and the ATEX directive 2014/34/EU.

Explosion Proof (with intrinsically Safe Probe) US/Canada: Class I, Div 1, Group B, C and D, T4 Class I, Zone 1 AEx db/ia [ia IIC Ga] IIB + H2 T4 Gb/Ga Class I, Zone 1 Ex db/ia [ia IIC Ga] IIB + H2 T4 Gb/Ga Ta = -40 °C to +70 °C Type 4X, IP67 Flame Proof ATEX - FM14ATEX0041X: II 2/1 G Ex db/ia [ia IIC Ga] IIB + H2 T6 to T1 Gb/Ga Ta = -40 °C to +70 °C IP67 IEC- IECEx FMG 14.0018X: Ex db/ia [ia IIC Ga] IIB + H2 T6 to T1 Gb/Ga Ta = -40 °C to +70 °C IP67	Non- IncendiveUS/Canada:US: Class I, II, III, Division 2, Group A, B, C, D, E, F, G, T4Canada: Class I, Division 2, Group A, B, C, DClass I, Zone 2 AEx nA [ia Ga] IIC T4 GcClass I, Zone 2 Ex nA [ia Ga] IIC T4 GcTa = -40 °C to +70 °CType 4X, IP67ATEX - FM14ATEX0042X:II 3 (1) G Ex nA [ia Ga] IIC T4 GcTa = -15 °C to +70 °CIP67IEC - IECEx FMG 14.00018X:Ex nA [ia Ga] IIC T4 Ga/GcTa = -15 °C to + 70 °CIP67
Intrinsically Safe US/Canada: Class I, II, III, Div 1, Group A, B, C, D, E, F, G, T4 Class I, Zone 0 AEx ia IIC T4 Ga Class I, Zone 0 Ex ia IIC T4 Ga Ta =-40 °C to + 70 °C Type 4X, IP67 ATEX - FM14ATEX0041X: II 1 G Ex ia IIC T4 Ga Ta = -40 °C to +70 °C IP67 IEC - IECEx FMG 14.0018X: Ex ia IIC T4 Ga Ta = -40 °C to +70 °C IP67	Dust Ignition ProofUS/Canada:Class II, III, Division 1, Group E, F and G, T4Ta = -40 °C to +70 °CType 4X, IP67ATEX - FM14ATEX0041X:II 1/2 D Ex ia/tb [ia Da] IIIC T85 °C to T450 °C Da/DbTa = -15 °C to +70 °CIP67IEC - IECEx FMG 14.0018X:Ex ia tb [ia Da] IIIC T85 °C to T450 °C DbEx ia tb [ia Da] IIIC T85 °C to T450 °C DbEx ia tb [ia Ca] IIIC T85 °C to T450 °C DbEx ia tb [ia Ca] IIIC T85 °C to T450 °C DbEx ia tb [ia Ca] IIIC T85 °C to T450 °C DbEx ia 1IIC T85 °C to T450 °C DaTa = -15 °C to +70 °CIP67

The following approval standards are applicable:

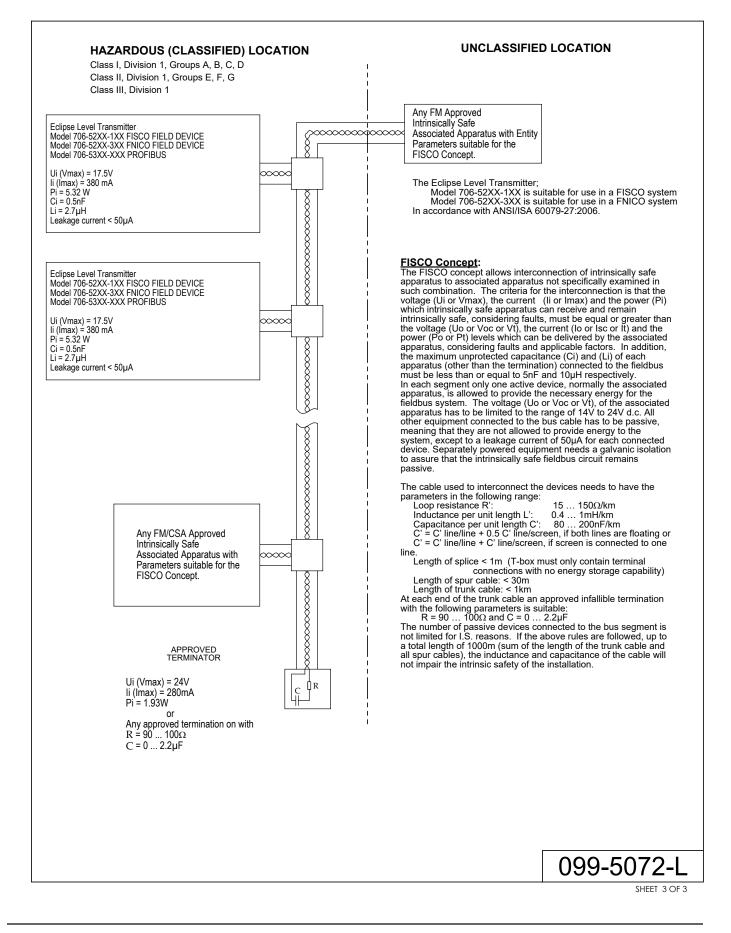
FM3600:2018, FM3610:2010, FM3611:2018, FM3615:2018, FM3616:2011, FM3810:2018, UL60079-0:2019, UL 60079-1:2015, ANSI/ISA 60079-11:2014, ANSI/ISA 60079-15:2012, ANSI/ISA 60079-26:2014, ANSI/NEMA 250:2003, ANSI/IEC 60529:2004, ANSI/UL 61010:2015, CSA-C22.2 No. 0.4:2009, CSA-C22.2 No. 0.5:2008, CSA-C22.2 No. 25:2009, CSA-C22.2 No. 30:2007, CSA- C22.2 No. 94:2001, CSA-C22.2 No. 157:2012, CSA-C22.2 No. 213:2012, CSA-C22.2 No. 1010.1:2009 CAN/CSA 60079-0:2019, CAN/CSA 60079-11:2011 CAN/CSA 60079-15:2012 C22.2 No. 60529:R2010, ANSI/ISA 12.27.01, EN/IEC60079-0:2018, EN60079-11:2014, EN60079-11:2012, EN60079-15:2010, EN60079-26:2015, EN60079-31:2014, EN60529+A1:1991-2000, IEC60079-0:2017, IEC60079-1:2014, IEC60079-11:2011, IEC60079-15:2010, IEC60079-26:2006, IEC60079-31:2008, ANSI/ISA 12.27.01:2011, ANSI/UL 61010:2015

3.5.1 Special Conditions of Use -


- 1. The enclosure contains aluminum and is considered to present a potential risk of ignition by impact or friction. Care must be taken during installation and use to prevent impact or friction.
- 2. The risk of electrostatic discharge shall be minimized at installation, following the directions given in the instructions.
- 3. Contact the original manufacturer for information on the dimensions of the flameproof joints.
- 4. For installation with ambient temperature of +70 °C, refer to the manufacturer's instructions for guidance on proper selection of conductors.
- 5. WARNING Explosion Hazard: Do not disconnect equipment when flammable or combustible atmoshpere is present.
- 6. For IEC and ATEX: To maintain the T1 to T6 temperature codes, care shall be taken to ensure the enclosure temperature does not exceed +75 °C.
- 7. For U.S. and Canada: To maintain the T4 temperature code, care shall be taken to ensure the enclosure temperature does not exceed +70 °C.
- 8. Temperature codes for the ratings Ex db/ia [ia IIC] IIB+H2 and Ex ia/tb [ia] IIIC are defined by the following table:

Process Temperature (PT)	Temperature Code-TCG (GAS)	Temperature Code-TCD (Dust)
Up to 75 °C	Т6	TCD= PT+10K=85 °C
From 75°C to 90 °C	T5	TCD= PT+10K=100 °C
From 90 °C to 120 °C	T4	TCD= PT+15K=135 °C
From 125 °C to 185 °C	Т3	TCD= PT+15K=200 °C
From 185 °C to 285 °C	T2	TCD= PT+15K=300 °C
From 285 °C to 435 °C	T1	TCD= PT+15K=450 °C

- 9. Flameproof joints are not intended to be repaired.
- 10. To maintain FM approval, the Model 706 transmitter with adapter shall be used only on Model 705 assemblies approved by FM Global (includes FM, CSA, Atex and IEC).
- 11. Provisions shall be made to provide transient over-voltage protection to a level not to exceed 119 V DC.


3.5.2 Agency Specifications – Explosion Proof Installation –

Factory Sealed: This product has been approved by Factory Mutual Research (FM) as a Factory Sealed device. NOTE: Factory Sealed: No Explosion Proof conduit fitting (EY seal) is required within 18" of the transmitter. However, an Explosion Proof conduit fitting (EY seal) is required between the hazardous and safe areas.

SHEET 2 OF 3

3.5.4 Agency Specifications – FM/CSA Intrinsically Safe FOUNDATION Fieldbus[™] Installation —

3.6 Specifications

3.6.1 Functional/Physical

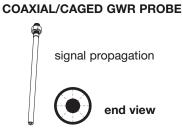
System Design		
Measurement Principle)	Guided Wave Radar based on Time Domain Reflectometry (TDR)
Input		
Measured Variable		Level, as determined by GWR time of flight
Span		15 cm to 30 m (6" to 100'); Model 7yS Probe 610 cm (20') max.
Output		
Туре		4 to 20 mA with HART: 3.8 mA to 20.5 mA useable (per NAMUR NE43)
		Foundation Fieldbus [™] : H1 (ITK Ver. 6.2.0)
		PROFIBUS PA
		Modbus
Resolution	Analog:	.003 mA
	Digital Display:	1 mm
Loop Resistance		591 ohms @ 24 VDC and 22 mA
Diagnostic Alarm		Selectable: 3.6 mA, 22 mA (meets requirements of NAMUR NE 43), or HOLD last output
Diagnostic Indication		Meets requirements of NAMUR NE107
Damping		Adjustable 0-10 seconds
User Interface		
Keypad		4-button menu-driven data entry
Display		Graphic liquid crystal display
Digital Communication/Systems		HART Version 7—with Field Communicator, AMS, or FDT
		DTM (PACT <i>ware</i> ™), EDDL
		FOUNDATION Fieldbus [™] , PROFIBUS PA or Modbus
Menu Languages	Transmitter LCD:	English, French, German, Spanish, Russian, Polish
	HART DD:	English, French, German, Spanish, Russian, Chinese, Portuguese, Polish
		FOUNDATION Fieldbus™, PROFIBUS PA and Modbus Host System: English
Power (at transmitter tern	ninals)	HART: General Purpose (Weather proof)/Intrinsically Safe/Explosion-proof:
		16 to 36 VDC
		11 VDC minimum under certain conditions (refer to I&O Manual BE57-606)
		FOUNDATION Fieldbus [™] and PROFIBUS PA: 9 to 32 VDC
		FISCO ia / FNICO ic, Explosion Proof, General Purpose and Weatherproof
		Modbus: 8 to 30 VDC
		Explosion Proof, General Purpose, and Weatherproof
Housing		
Material		IP67/die-cast aluminum A413 (<0.4 % copper); optional 316 stainless steel
Net/Gross Weight	Aluminum:	2,0 kg (4.5 lbs.)
3	316 Stainless Steel:	4,50 kg (10.0 lbs.)
Overall Dimensions		H 212 mm (8.34") x W 102 mm (4.03") x D 192 mm (7.56")
Cable Entry		1/2" NPT or M20 x 1,5
SIL 2/3 Capable (Certif	ïed)	Safe Failure Fraction = 93 % (HART only)
		Functional Safety to SIL 2/3 in accordance with IEC 61508

3.6.1 Functional/Physical

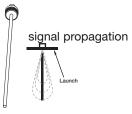
Environment	
Operating Temperature	-40 to +80 °C (-40 to +175 °F); LCD viewable -20 to +70 °C (-5 to +160 °F)
Storage Temperature	-45 to +85 °C (-50 to +185 °F)
Humidity	0 to 99 %, non-condensing
Electromagnetic Compatibility	Meets CE requirement (EN 61326) and NAMUR NE 21 ①
Surge Protection	Meets CE EN 61326 (1000V)
Shock/Vibration	ANSI/ISA-S71.03 Class SA1 (Shock); ANSI/ISA-S71.03 Class VC2 (Vibration)
Performance	
Reference Conditions 2	Reflection from liquid, with dielectric constant in center of selected range,
	with a 1,8 m (72") coaxial probe at +20 °C (+70 °F), in Auto Threshold Mode
Linearity ③	<0.1 % of probe length or 2,5 mm (0.1"), whichever is greater
Accuracy ④	± 0.1 % of probe length or $\pm 2,5$ mm (0.1"), whichever is greater
Interface Operation:	±25 mm (1") for an interface thickness greater than 50 mm (2")
Resolution	±0.1 mm or 1"
Repeatability	<2,5 mm (0.1")
Hysteresis	<2,5 mm (0.1")
Response Time	Approximately 1 second
Initialization Time	Less than 10 seconds
Ambient Temperature Effect	Approx. ± 0.02 % of probe length/°C (for probes greater than 2,5 m (8'))
Process Dielectric	<7,5 mm (0.3") within selected range
Foundation Fieldbus [™]	
ITK Version	6.2.0
H1 Device Class	Link Master (LAS)—selectable ON/OFF
H1 Profile Class	31PS, 32L
Function Blocks	(8) Al, (3) Transducer, (1) Resource, (1) Arithmetic, (1) Input Selector,
	(1) Signal Characterizer, (2) PID, (1) Integrator
Quiescent Current	15 mA
Execution Time	15 ms (40 ms PID Block)
Device Revision	02
DD Version	0x01
PROFIBUS PA	
Device Revision	0x101A
Digital Communication Protocol	Version 3.02 MBP (31.25 kbits/sec)
Function Blocks	(1) × Physical Block, (8) × Al Blocks, (3) × Transducer Block
Quiescent Current	15 mA
Execution Time	15 ms
Modbus	
Power Consumption	<0.5W
Signal Wiring	Two-wire half duplex RS-485 Modbus
Ground (common mode) Voltage	±7V
Bus Termination	Per EIA-485

① Single rod probes must be used in metallic vessel or stillwell to maintain CE noise immunity.

Specifications will degrade in Fixed Threshold mode.
 Linearity in top 46 cm (18") of Single Rod probes in tanks will be application dependent.


 \circledast Accuracy may degrade when using manual or automatic compensation.

3.6.2 O-ring (Seal) Selection Chart -


Code	"O"-Ring/Seal Material	Max. Process Temperature	Min. Process Temperature	Max. Process Pressure	Not Recommended For Applications	Recommended for Applications	
0	Viton [®] GFLT	200 °C @ 16 bar (400 °F @ 230 psi)	-40 °C (-40 °F)	70 bar @ 20 °C (1000 psi @ 70 °F)	Ketones (MEK, acetone), skydrol fluids, amines, anhydrous ammonia, low molecular weight esters and ethers, hot hydrofluoric or chlorosulfuric acids, sour HCs	General purpose, ethylene	
1	EPDM	120 °C @14 bar (250 °F @ 200 psi)	-50 °C (-60 °F)	70 bar @ 20 °C (1000 psi @ 70 °F)	Petroleum oils, di-ester base lubricant, steam	Acetone, MEK, skydrol fluids	
2	Kalrez [®] 4079	200 °C @ 16 bar (400 °F @ 232 psi)	-40 °C (-40 °F)	70 bar @ 20 °C (1000 psi @ 70 °F)	Hot water/steam, hot aliphatic amines, ethylene oxide, propylene oxide	Inorganic and organic acids (including hydro fluids and nitric), aldehydes, ethylene, organic oils, blycols, silicone oils, vinegar, sour HCs	
3	HSN (Highly Saturated Nitrile)	135 °C @ 22 bar (275 °F @ 320 psi)	-20 °C (-4 °F)	70 bar @ 20 °C (1000 psi @ 70 °F)	Halogenated HCs, nitro HCs, phosphate ester hydraulic fluids, ketones (MEK, acetone), strong acids, ozone, automotive brake fluid, steam	NACE applications	
4	Buna-N	135 °C @ 22 bar (275 °F @ 320 psi)	-20 °C (-4 °F)	70 bar @ 20 °C (1000 psi @ 70 °F)	Halogenated HCs, nitro HCs, phosphate ester hydraulic fluids, ketones (MEK, acetone), strong acids, ozone, automotive brake fluid	General purpose sealing, petroleum oils and fluids, cold water, silicone greases and oils, di-ester base lubricants, ethylene glycol base fluids	
5	Neoprene®	120 °C @ 20 bar (250 °F @ 290 psi)	-55 °C (-65 °F)	70 bar @ 20 °C (1000 psi @ 70 °F)	Phosphate ester fluids, ketones (MEK, acetone)	Refrigerants, high anline point petroleum oils, silicate ester lubricants	
6	Chemraz [∞] 505	200 °C @ 14 bar (400 °F @ 200 psi)	-20 °F (-30 °C)	70 bar @ 20 °C (1000 psi @ 70 °F)	Acetaldehyde, ammonia + lithium metal solution, butyraldehyde, di-water, freon, ethylene oxide, liquors, isobutyraldehyde	Inorganic and organic acids, alkalines, ketones, esters, aldehydes, fuels	
7	Polyurethane	95 °C @ 29 bar (200 °F @ 420 psi)	-55 °C (-65 °F)	70 bar @ 20 °C (1000 psi @ 70 °F)	Acids, Ketones, chlorinated HCs	Hydraulic systems, petroleum oils, HC fuel, oxygen, ozone	
8	Simriz SZ485 (formerly Aegis PF128) ①	200 °C @ 16 bar (400 °F @ 232 psi)	-20 °C (-4 °F)	70 bar @ 20 °C (1000 psi @ 70 °F)	Black liquor, freon 43, freon 75, galden, KEL-F liquid, molten potassium, molten sodium	Inorganic and organic acids (including hydro fluids and nitric), aldehydes, ethylene, organic oils, gycols, silicone oils, vinegar, sour HCs, steam, amines, ethylene oxide, propylene oxice, NACE applications	
A	Kalrez [®] 6375	200 °C @ 16 bar (400 °F @ 232 psi)	-40 °C (-40 °F)	70 bar @ 20 °C (1000 psi @ 70 °F)	Hot water/steam, hot aliphatic amines	Inorganic and organic acids (including hydro fluids and nitric), aldehydes, ethylene, organic oils, blycols, silicone oils, vinegar, sour HCs, ethylene oxide, propylene oxide	
В	Kalrez [®] 6375	200 °C @ 16 bar (400 °F @ 232 psi)	-40 °C (-40 °F)	70 bar @ 20 °C (1000 psi @ 70 °F)	Hot water/steam, hot aliphatic amines, ethylene oxide, propylene oxide	Hydrofluoric acid	
D or N	Glass Ceramic Alloy	450 °C @ 248 bar (850 °F @ 3600 psi)	-195 °C (-320 °F)	431 bar @ 20 °C (6250 psi @ 70 °F)	Hot alkaline solutions HF acid, media with ph>12, direct exposure to saturated steam	General high temperature/high pressure applications, hydrocarbons, full vacuum (hermetic), ammonia, chlorine	

1 Maximum +150 °C (+300 °F) for use on steam.

3.6.3 Probe Selection Guide

SINGLE ROD/CABLE PROBE

GWR Probe①	Description	Application	Installation	Dielectric Range 23	Temperature Range ④	Max. Pressure	Vacuum 5	Overfill Safe	Viscosity cP (mPa.s)
Coaxial GWR Probes—Liquids									
7yT	Standard Temperature	Level/Interface	Tank/Chamber	€ _r 1.4–100	-40 to +200 °C (-40 to +400 °F)	70 bar (1000 psi)	Yes	Yes	500/2000
7yP	High Pressure	Level/Interface	Tank/Chamber	ε _r 1.4−100	-196 to +200 °C (-320 to +400 °F)	431 bar (6250 psi)	Full	Yes	500/2000
7yD	High Temp./ High Press.	Level/Interface	Tank/Chamber	ε _r 1.4–100	-196 to +450 °C (-320 to +850 °F)	431 bar (6250 psi)	Full	Yes	500/2000
7yS	Steam Probe	Saturated Steam	Tank/Chamber	ε _r 10–100	-40 to +425 °C ⑥ (-40 to +800 °F)	207 bar (3000 psi)	Full	No ⑦	500
			Cage	d GWR Pro	bes—Liquids				
7yG	Standard Temperature	Level/Interface	Chamber	ε _r 1.4–100	-40 to +200 °C (-40 to +400 °F)	70 bar (1000 psi)	Yes	Yes	10000
7yL	High Pressure	Level/Interface	Chamber	ε _r 1.4–100	-196 to +200 °C (-320 to +400 °F)	431 bar (6250 psi)	Full	Yes	10000
7yJ	High Temp./ High Press.	Level/Interface	Chamber	ε _r 1.4−100	-196 to +450 °C (-320 to +850 °F)	431 bar (6250 psi)	Full	Yes	10000
	Single Rod Rigid GWR Probes—Liquids								
7yF	Standard Temperature	Level/Interface	Tank	ε _r 1.7–100	-40 to +200 °C (-40 to +400 °F)	70 bar (1000 psi)	Yes	No ®	10000
7yM	High Pressure	Level/Interface	Tank	ε _r 1.7–100	-196 to +200 °C (-320 to +400 °F)	431 bar (6250 psi)	Full	No ®	10000
7yN	High Temp./ High Press.	Level/Interface	Tank	ε _r 1.7–100	-196 to +450 °C (-320 to +850 °F)	431 bar (6250 psi)	Full	No ®	10000
			Single Cable	Flexible G	VR Probes—Liqı	uids			
7y1	Standard Temperature	Level/Interface	Tank	ε _r 1.7–100	-40 to +200 °C (-40 to +400 °F)	70 bar (1000 psi)	Yes	No ®	10000
7y3	High Pressure	Level/Interface	Tank	ε _r 1.7–100	-196 to +200 °C (-320 to +400 °F)	431 bar (6250 psi)	Full	No ®	10000
7y6	High Temp./ High Press	Level/Interface	Chamber	€ _r 1.4–100	-196 to +450 °C (-320 to +850 °F)	431 bar (6250 psi)	Full	No ®	10000
			Single Cable	e Flexible G	WR Probes—Sol	lids			
7y2	Bulk Solids Probe	Level	Tank	ε _r 1.7–100	-40 to +65 °C (-40 to +150 °F)	Atmos.	No	No ®	10000

1 2nd digit A=English, C=Metric 2 Minimum \pounds_r 1.2 with end of probe analysis enabled.

③ Single rod probes mounted directly into the vessel must be within 75–150 mm (3–6") of metal tank wall to obtain minimum dielectric of 1.4, otherwise \mathcal{E}_r min = 1.7.

④ Depends on the probe spacer material. Refer to Model Selection for spacer options.

© ECLIPSE probes containing o-rings can be used for vacuum (negative pressure) service, but only those probes with glass seals are hermetically sealed to <10⁻⁸ cc/sec @ 1 atmosphere helium.

6 When installed in side-mounted chamber.

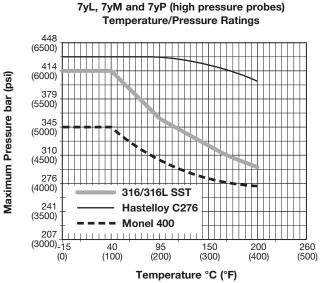
 $\ensuremath{\overline{\mathbb{O}}}$ Consult factory for overfill applications

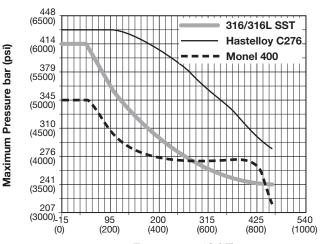
® Overfill capability can be achieved with software.

3.6.4 Probe Specifications

Dual-element Probes

Model	Coaxial / Cage (7yG, 7yT)	HP Coaxial/Cage HTHP Coaxial/Cage (7yL, 7yP)① (7yD, 7yJ)①		Steam (7yS)①		
Materials	316/316L SS (Hastelloy C and Monel opt.),TFE spac- ers, Viton [®] O-rings	316/316L SS, glass ceramic alloy, Inconel, TFE spacers	316/316L SS, glass ceramic alloy, Inconel, TFE or Peek [™] spacers	316/316L SS, Peek [™] , Iconel, Aegis PF 128 O-ring		
	Small and N	10 mm (.875") - 300 °C 32 mm (1.25") - 425 °C				
Diameter	Enlarged Coaxi	42 mm (1.62")				
	Cage	N/A				
Process Connection	3/4" NPT, 1" BSP	3/4" NPT	3/4" NPT, 1" BSP			
FICESS Connection	ASME or EN flanges	IE or EN flanges ASME or EN flanges				
Transition Zone (Top)		200 mm (8") @ ɛ _r = 80				
Transition Zone (Bottom)	150 mm (6") @ ɛ _r = 1.4	150 mm (6"	25 mm (1")@ £ _ 80			
	25 mm (1") @ ɛ _r = 80.0	25 mm (1")	25 mm (1")@ ε _r = 80			
Pull Force/Tension	N/A					

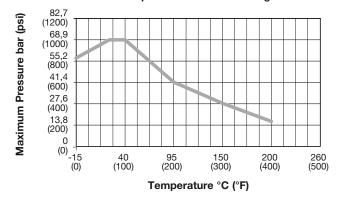

NOTE: Transition Zone is dielectric dependent; ε_r = dielectric permittivity. The transmitter still operates but level reading may become nonlinear in Transition Zone.


Single Rod Probes

Model	7yF 7yM, 7yN①		7y1 Flexible	7y3, 7y6 Flexible ①	7y2 Flexible		
Materials	316/316L SS (Hastelloy [®] C and Monel optional) Viton®/PEEK [™] O-rings	316/316L SS, Inconel (Hastelloy [®] C and Monel optional) Viton [®] /PEEK [™] O-rings	316/316L SS, Viton® O-rings (optional PFA coating)	316/316L SS, Inconel, Viton® O-rings	316/316L SS, Viton® O-rings		
Diameter	13 mm	ח (0.5")	6 mm (0.25")				
Blocking Distance - Top	0-91 cm (0-36")-Installation dependent (adjustable)						
Process Connection		T (7yF) EN flange	2" NPT ASME or EN flange				
Transition Zone (Top)	Application Dependent						
Transition Zone (Bottom)	150 mm (6" 50 mm (2")) @ ε _r = 1.4 @ ε _r = 80.0	305 mm (12") minimum				
Pull Force/Tension	N/A		9 kg (20 lbs.) 1360 kg (3		1360 kg (3000 lbs.)		
Side Load	Not more than 7,6 cm (3") deflection at end of 305 cm (120") probe		Cable not to exceed 5° from vertical				

① Probes of Hastelloy C contain an Inconel 625 to Hastelloy C seal weld.

Temperature/Pressure Charts



7yD, 7yJ, 7yN, 7y3 and 7y6 (high temp./high pressure probes)

Temperature/Pressure Ratings

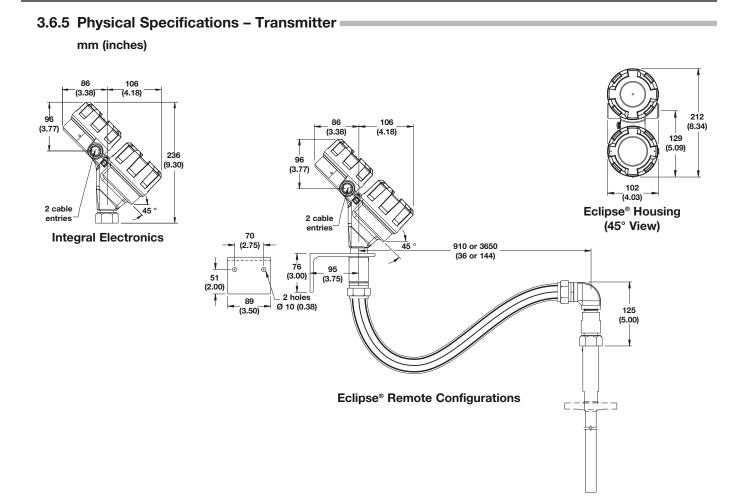
Temperature °C (°F)

7yF, 7yG, 7yT, 7y1 Temperature/Pressure Ratings

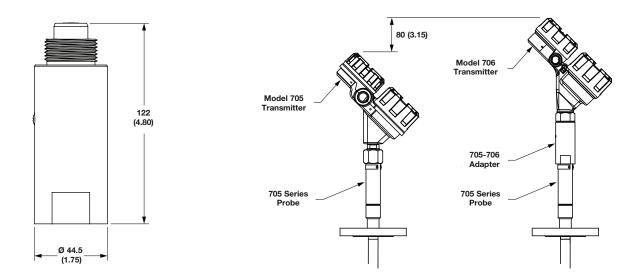
High Pressure Probes			Low Pressure	High I	Low Pressure				
Temp. °C (°F)	SST	Hastelloy	Monel	All Materials	Temp. °C (°F)	SST	Hastelloy	Monel	All Materials
-40 (-40)	6000	6250	5000	750	315 (+600)	3760	5040	3940	
20 (+70)	6000	6250	5000	1000	345 (+650)	3680	4905	3940	
40 (+100)	6000	6250	5000	1000	370 (+700)	3620	4730	3920	
95 (+200)	5160	6250	4380	650	400 (+750)	3560	4430	3880	
150 (+300)	4660	6070	4080	400	425 (+800)	3520	4230	3820	
200 (+400)	4280	5820	3940	270	450 (+850)	3480	4060	3145	
260 (+500)	3980	5540	3940	_					

• 7yS steam probes are rated to 3000 psi (207 bar) up to +425 °C (+800 °F) when installed in side-mounted chamber.

• 7y3, 7y6 flexible probes: Pressure is limited by the chamber.

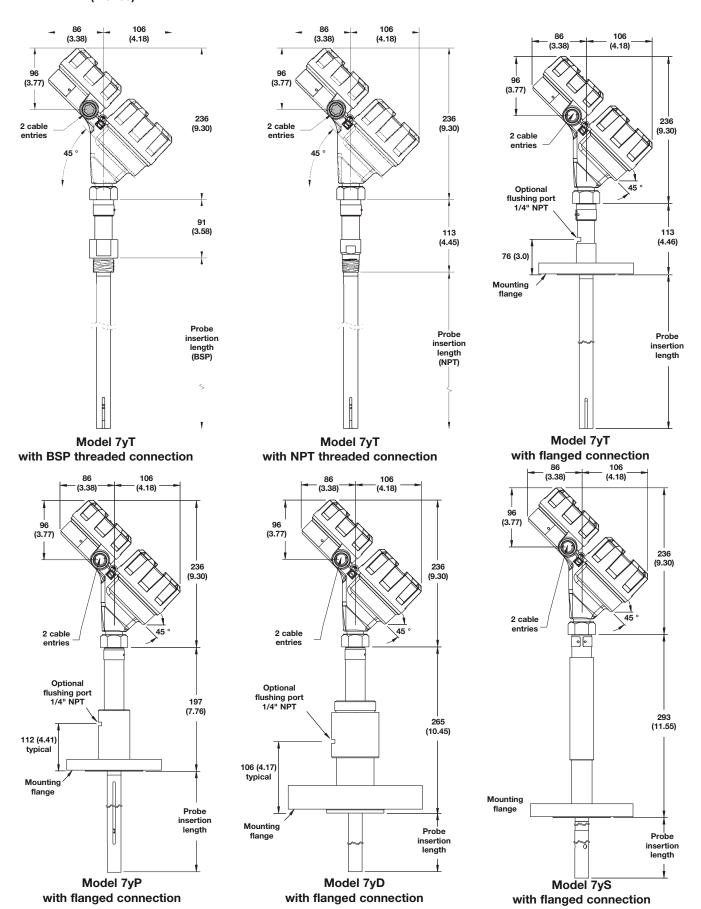

• 7y2 bulk solids probes: 50 psi (3.45 bar) to +65 °C (+150 °F).

High pressure probes with threaded fittings are rated as follows: 7yD, 7yN, 7yP and 7y3 probes with threaded fittings have 3600 psi (248 bar) rating. 7yM probes with threaded fittings have 2016 psi (139 bar) rating.

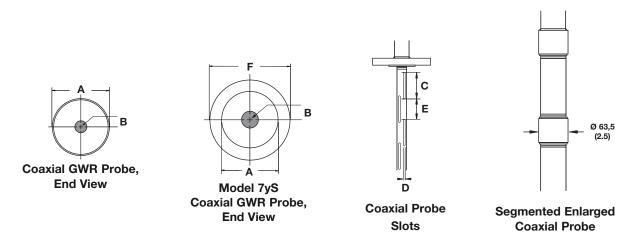

Maximum pressure for 1" NPT or 1" BSP: 316 SST probe: 139 bar (2016 psi) • Hast. C276 probe: 145 bar (2100 psi) • Monel probe: 116 bar (1680 psi)
Maximum pressure for 2" NPT or 2" BSP:

316 SST probe: 414 bar (6000 psi) • Hast. C276 probe: 431 bar (6250 psi) • Monel probe: 345 bar (5000 psi)

7yF, 7yG, 7yT, 7y1



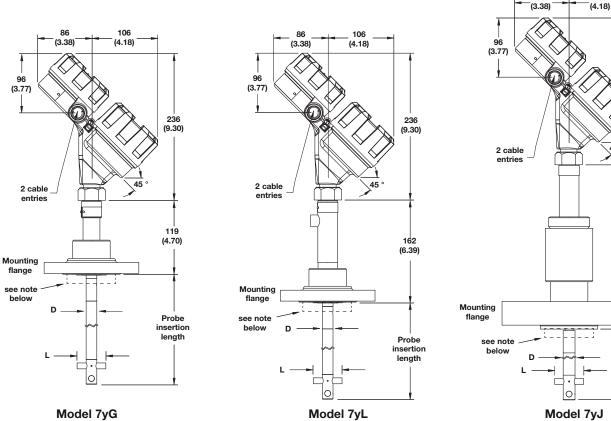
3.6.6 Physical Specifications – Model 705/706 Adapter (032-6923-001) mm (inches)


3.6.7 Physical Specifications – Coaxial Probes

mm (inches)

3.6.7 Physical Specifications – Coaxial Probes

mm (inches)



mm (inches)

Dim.	Small Diameter	Medium Diameter	Large Diameter	Enlarged (standard)			
Α	22,5 (0.88)	31,75 (1.25)	41,1 (1.62)	45 (1.75) - SST 49 (1.92) - HC and Monel			
В	8 (0.31)	10 (0.38) max.	13 (0.50) max.	16 (0.63) max.			
С	100 (4.08)	153 (6.05)	153 (6.05)	153 (6.05)			
D	4 (0.15)	8 (0.30)	8 (0.30)	8 (0.30)			
Е	96 (3.78)	138 (5.45)	138 (5.45)	138 (5.45)			
F	31,75 (1.25)	—	_	_			

3.6.8 Physical Specifications – Caged Probes

mm (inches)

with flanged connection

Model 7yJ with flanged connection

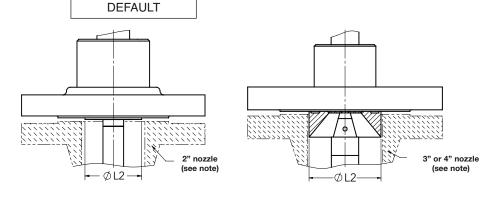
86

106

236 (9.30)

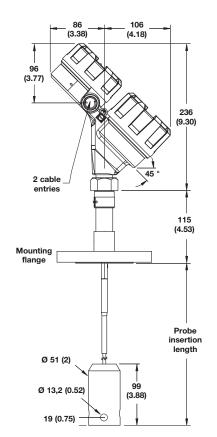
265 (10.45)

Probe

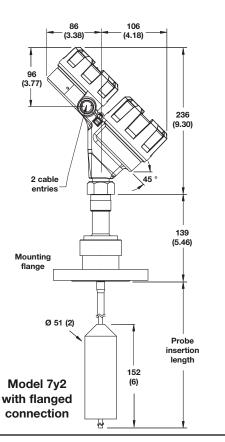

insertion length

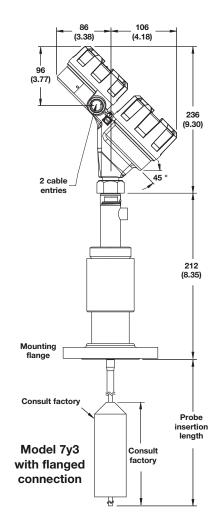
Cage Size	Probe Rod Diameter (D)	Spacer Length (L)			
2"	13 to 19 mm (0.5 to 0.75")	46 mm (1.82")			
3"	19 to 29 mm (0.75 to 1.13")	67 mm (2.64")			
4"	27 to 38 mm (1.05 to 1.50")	91 mm (3.60")			

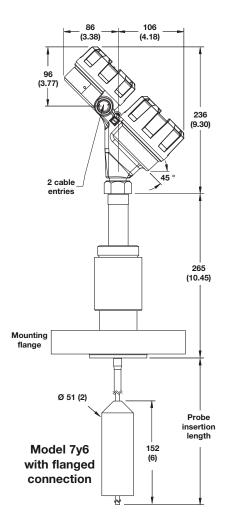
with flanged connection

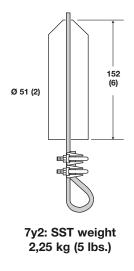

NOTE: Caged Probes (7yG, 7yL, 7yJ) with 2", 3" or 4" (DN50, DN80 or DN100) nozzle are equiped with a fix outer matching ring welded to flange face. Default value is for nozzle sizes SCH 80 or equal. For small inside diameter please specify per below table.

Nozzle		ØL2			
Size	SCH 80 (or smaller)	SCH 160	SCH XXS		
2"	47.1 mm	N.A.	N.A.		
3"	71 mm	63.5 mm	55.5 mm		
4"	94.5 mm	84 mm	76.2 mm		

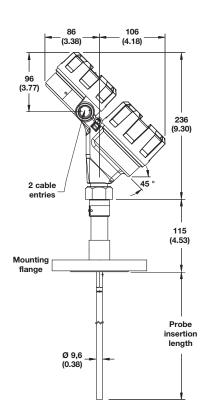


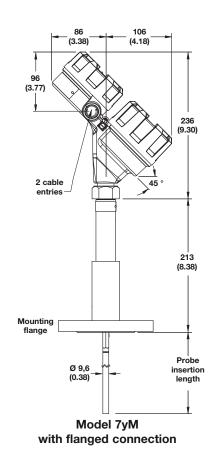

3.6.9 Physical Specifications – Single Cable Flexible Probes

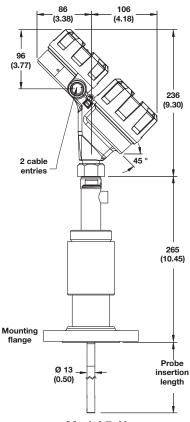

mm (inches)



Model 7y1 with flanged connection

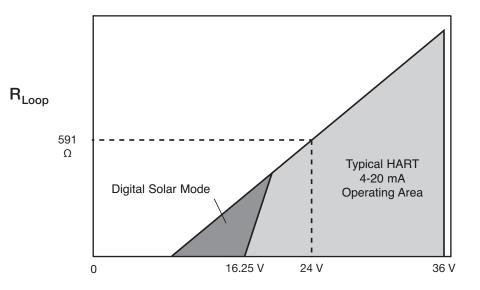





3.6.10 Physical Specifications – Single Rod Rigid Probes

mm (inches)

Model 7yF with flanged connection



Model 7yN with flanged connection

3.6.11 Power Supply Requirements

3.6.11.1 Safe Operating Area

3.6.11.2 Supply Voltage

Operational M	Current Consumption	Vmin	Vmax	
	General Purpose	4mA 20mA	16,25V 11V	36V 36V
HART	Intrinsically Safe	4mA 20mA	16,25V 11V	28.6V 28.6V
	Explosion Proof	4mA 20mA	16,25V 11V	36V 36V
Fixed Current-Solar	General Purpose	10mA ①	11V	36V
Power Operation (PV transmitter via HART)	Intrinsically Safe	10mA ①	11V	28,6V
HART Multi-Drop Mode	Standard	4mA ①	16.25V	36V
(Fixed Current)	Intrinsically Safe	4mA ①	16.25V	28,6V
	General Purpose	15 mA ②	9V	32V
FOUNDATION Fieldbus [™] / PROFIBUS PA	Intrinsically Safe	15 mA 2	9V	17,5V
THORBOOTA	Explosion Proof	15 mA 2	9V	32V

① Start-up current 12 mA minimum.

2 Quiescent current.

3.7 Model Number

3.7.1 Transmitter

1 2 3 | BASIC MODEL NUMBER

7 0 6 ECLIPSE 4th Generation Guided Wave Radar (GWR) Level Transmitter

-		1	4	I PO	WER							
			L	5	24	VDC, T	wo-Wi	re				
					5 SIC	GNAL (DUTPU	JT				
					1	_	0 mA					
					2						nunicat	ion
					3	-				inicatio		a a 1)
					4	Moc	ibus C	ommı	inicati	on (8th	Digit =	0 or 3 only)
						6 SAF	1					
						0	-					^{FM} , PROFIBUS PA and Modbus only (5th digit = $2, 3 \text{ or } 4$)
						2	SIL	2/3 C	ertifie	1 - HA	RT only	y (5th digit = 1)
							7 AC	CESS	ORIES	S/MOI	UNTIN	G
							0	No	oNo D	igital I	Display	or Keypad - Integral
							А	_	~	· ·		eypad - Integral
							В		~	· ·		eypad - 1 m (3') remote
							С	Di	igital I	Display	and K	eypad - 3,6 m (12') remote
								8	BICL		CATIO	
									0			urpose, Weatherproof (IP 67)
									1			y Safe (FM & CSA CL 1 Div 1, Grps A, B, C, D) I, 2 or 3)
									3	Exp	olosion-	proof (FM & CSA CL 1 Div 1, Grps B, C, D)
									А	-		y Safe (ATEX/IEC Ex ia IIC T4) (5th digit = 1, 2 or 3)
								-	В	-	<u>^</u>	of (ATEX/IEC Ex d ia IIB + H2 T6) (5th digit = $1, 2 \text{ or } 3$)
									С			ing (ATEX Ex n IIC T6) / dive (FM & CSA, CL 1 Div 2) (5th digit = 1, 2 or 3) ①
									D	Du	st Ex (A	TEX II) (5th digit = 1, 2 or 3)
								_			onsult fa	ctory for proper part numbers
										1	Die	-cast Aluminum, Dual-compartment, 45-degree
										2	Inv	estment Cast, 316 SS, Dual-compartment, 45-degree
										А		-cast Aluminium, Dual-compartment, 45-degree with //706 adapter @
											_	estment Cast, 316 SS, Dual-compartment, 45-degree
										В		n 705/706 adapter @
											2 A	vailable only with 5th digit = 3
											10 C	CONDUIT CONNECTION
											0	1/2" NPT
											1	M20 x 1,5
											2	1/2" NPT with sunshade
											3	M20 x 1,5 with sunshade
_	<u> </u>			¥	*	¥	, ♥	י ר	¥	*	₩	1
7	0	6	$\left -\right $	5				$\left -\right $				
1	2	3	- '	4	5	6	7	- '	8	. 9	10	-

3.7.2 Enlarged Coaxial Probe

1 | TECHNOLOGY

C	0	h (inches)					
	Metric	(centimete	ers)				
	3 CONT		ON (STYLE (DICID)				
			ON/STYLE (RIGID)	0 011 /01 /	2 16/50	00/:050 00 + 111	
		~	oaxial, High Temp/High Pro Coaxial, High Pressure: (
		e	Coaxial, Overfill Standard				. 0
		_					
			ROCESS CONNECTIO	N – SIZE/TYPE (co	nsult fac	tory for other proce	ess connections)
		Thread 4 1	2" NPT Thread ①		42		
					42	2" BSP (G 2") Threa	
		ASME I	0				
		43	2" 150# ASME RF (5M	3" 1500# ASME	-
		4 4	2" 300# ASME RF (5N	3" 2500# ASME	-
		4 5	2" 600# ASME RF (63	4" 150# ASME R	
		4 K	2" 600# ASME RTJ	(1)	64	4" 300# ASME R	
		53	3" 150# ASME RF		65	4" 600# ASME R	
		54	3" 300# ASME RF		66	4" 900# ASME R	
		55	3" 600# ASME RF		67	4" 1500# ASME	
		56	3" 900# ASME RF		68	4" 2500# ASME	
		57	3" 1500# ASME RF		6K	4" 600# ASME R	
		58	3" 2500# ASME RF		6L	4" 900# ASME R	-
		5K	3" 600# ASME RTJ		6M	4" 1500# ASME	-
		5L	3" 900# ASME RTJ		6N	4" 2500# ASME	KIJ
		EN Flar	-				
		DA	,	1092-1 TYPE A ①	ΕH	DN 80, PN 320	EN 1092-1 TYPE B
		DB	DN 50, PN 25/40 EN		EJ	DN 80, PN 400	EN 1092-1 TYPE B
		DD	,	1092-1 TYPE B2 ①	F A	DN 100, PN 16	EN 1092-1 TYPE A
		DE	,	1092-1 TYPE B2 ①	FB	DN 100, PN 25/40	EN 1092-1 TYPE A
		EA		1092-1 TYPE A	F D	DN 100, PN 63	EN 1092-1 TYPE B
		EB	,	1092-1 TYPE A	FE	DN 100, PN 100	EN 1092-1 TYPE B
		E D		1092-1 TYPE B2	FF	DN 100, PN 160	EN 1092-1 TYPE B
		EE	,	1092-1 TYPE B2	FG	DN 100, PN 250	EN 1092-1 TYPE B
		E F E G		1092-1 TYPE B2	FH	DN 100, PN 320	EN 1092-1 TYPE B
			,	1092-1 TYPE B2	FJ	DN 100, PN 400	EN 1092-1 TYPE B
			Tube Mating Flanges				
		ТТ	600# Fisher (249B/259				
		TU	600# Fisher (249C) in				
		UT	600# Masoneilan flang				
		UU	600# Masoneilan flang			-+ -!	
↓ ↓	¥		 Confirm mounting conditi Always check dimensions 				
7]{[]]][]]	- [] [] [] [] [] [] [] [] [] [] [] [] []			

3.7.2 Enlarged Coaxial Probe continued

6 CO	NSTRUCTION C	DES	
0	Industrial		
K	ASME B31.1		
L	ASME B31.3		
M		ACE MR0175/MR0103 — NOT available with carbon steel flange	
N	NACE MR01/5/	R0103 — NOT available with carbon steel flange	
	7 FLANGE OP	ONS — Offset flanges are available only with small coaxial probes	
	0 None		
	8 MATH	IAL OF CONSTRUCTION - FLANGE/NUT/ROD/INSULATION	
	Α	16 SS/316L SS (Probe O.D. 45 mm (1.75"))	
	В	tastelloy C (Probe O.D. 49 mm (1.93"))	
	С	Ionel (Probe O.D. 49 mm (1.93"))	
	R	16 SS/316L SS with Carbon Steel Flange (Probe O.D. 45 mm (1.75"))	
	S	Iastelloy C with Carbon Steel Flange (Probe O.D. 49 mm (1.93"))	
	Т	Ionel with Carbon Steel Flange (Probe O.D. 49mm (1.93"))	
	9	SPACER MATERIAL	
		1 TFE (+200 °C/+400 °F) — Available only with 3rd digit P or T — $\mathcal{E}_r \ge 1.4$	
		2 PEEK HT — Available only with 3rd digit D (+345 °C/+650 °F) — $\mathcal{E}_r \ge 1.4$	
		3 Ceramic (High Temp. >+425 °C/+800 °F) — Available only with 3rd digit D — \mathcal{E}_{r} :	
		4 Duratron [®] CU60 PBI (+425 °C/+800 °F) — Available only with 3rd digit D — $\mathcal{E}_{r} \ge$	1.4
		5 None - with metal shorting rod — $\mathcal{E}_r \ge 1.4$ — Future	
		10 O-RING MATERIALS/SEAL OPTIONS	
		0 Viton [®] GFLT — Available only with 3rd digit T	
		2 Kalrez [®] 4079 — Available only with 3rd digit T	
		8 Aegis PF 128 (NACE) — Available only with 3rd digit T	
		A Kalrez 6375 — Available only with 3rd digit T	
		B HF Acid Probe — Available only with 3rd digit T and 8th digit C	
		D None/Glass Ceramic Alloy (dual-seal design with annunciator fitting)— Available only w	vith 3rd digit D or
		N None/Glass Ceramic Alloy — Available only with 3rd digit D, P or S	
		11 PROBE SIZE/ELEMENT TYPE/FLUSHING C	CONNECTIO
		0 Standard Enlarged Coaxial Probe	
		1 Standard Enlarged Coaxial Probe with Flus	shing Port
		12 SPECIAL OPTIONS ①	
		0 Single Length Probe (Nor	n-Segmented
		1 1-piece Segmented Probe O	
		2 2-piece Segmented Probe O	
		3 3-piece Segmented Probe O	
		4 4-piece Segmented Probe O 5 5-piece Segmented Probe O	
		6 6-piece Segmented Probe O	
		① Refer to section 3.7.7.	
		13 14 15 INSERT	ION LENG
		$rac{1}{2}$	99)
	L		
			neasure determine it of model numbe
\overline{M}			
\mathbb{N}			
2	3 4		5

3.7.3 Smal Coaxial Probe

1 | TECHNOLOGY

7 E			Probes - Model 706									
2 MI	EASURI	EMEN	NT SYSTEM									
А	Eng	glish (i	inches)									
С	Met	ric (c	entimeters)									
	3 CON	NFIG	URATION/STYLE (1	RIGID)								
	D		all Coaxial, High Temp		sure [.] Overf	ill w/Glass S	Seal (+4	450 9	°C/+850 °F) — Available	only wit	h 10t	n digit N or D
	P		all Coaxial, High Pres	~								
	S		xial, Saturated Steam (u							with 10	in uigi	
	T		all Coaxial, Overfill S	<u>^</u>						dioit N	or D	
			ROCESS CONNECT		-							ne)
		reade		100 = 3			. lacic	Лу	for other process of	Johne	cuo	115)
		1 1		Not availabl	o with 2nd D	init D			11 DOD (0, 11) H	1 17		111 11 1 1 1 1 1 1 1 1
		41	3/4" NPT Thread -				2 2		1" BSP (G 1") Threa			
			2" NPT Thread – No	ot available v	nun sra Digi	. 5	4 2	2	2" BSP (G 2") Threa	ld – No	ot avai	lable with 3rd Digit S
			langes							<u> </u>	1	
		3 1"			/2" 2500# A		53		150# ASME RF	63		150# ASME RF
		4 1"			/2" 2500# A	SME RTJ ③	54		300# ASME RF	64		300# ASME RF
	2	5 1"		43 2"	150# ASM	E RF	55	3"	600# ASME RF	65	4"	600# ASME RF
	2	K 1"	600# ASME RTJ ① ③	4 4 2"	300# ASM	E RF	56	3"	900# ASME RF	66	4"	900# ASME RF
	3	3 1	1/2" 150# ASME RF ③	4 5 2"	600# ASM	E RF	57	3"	1500# ASME RF	67	4"	1500# ASME RF
	3	4 1	1/2" 300# ASME RF ③	472"	900/1500	# ASME RF	58	3"	2500# ASME RF	68	4"	2500# ASME RF
	3	5 1	1/2" 600# ASME RF ③	48 2"	2500# ASN	AE RF	5 K	3"	600# ASME RTJ	6 K	4"	600# ASME RTJ
	3	K 1	1/2" 600# ASME RTJ ③	4 K 2"	600# ASM	E RTJ	5 L	3"	900# ASME RTJ	6 L	4"	900# ASME RTJ
	3	7 1	1/2" 900/1500# ASME RF③	4 M 2"	900/1500	# ASME RTJ	5 M	3"	1500# ASME RTJ	6 M	4"	1500# ASME RTJ
	3	M 1	1/2" 900/1500# ASME RTJ③	4 N 2"	2500# ASN	AE RTJ	5 N	3"	2500# ASME RTJ	6 N	4"	2500# ASME RTJ
	EN	I Flan	iges				L					-
		3 B	DN 25, PN 16/25/40	EN 1092-1	TYPE A () (3)	ΕA		DN 80, PN 16	EN	109	2-1 TYPE A
		3 C	DN 25, PN 63/100				EB		DN 80, PN 25/40			2-1 TYPE A
		СВ	DN 40, PN 16/25/40				E D	_	DN 80, PN 63			2-1 TYPE B2
		CC	DN 40, PN 63/100				E E	_	DN 80, PN 100			2-1 TYPE B2
		CF			TYPE B2		EF		DN 80, PN 160			2-1 TYPE B2
		CG			TYPE B2		EG	_	DN 80, PN 250			2-1 TYPE B2
		СН			TYPE B2		EH	_	DN 80, PN 320			2-1 TYPE B2
		СЈ			TYPE B2		EJ		DN 80, PN 400			2-1 TYPE B2
) A	'	EN 1092-1 EN 1092-1			F A		DN 100, PN 16			2-1 TYPE A
		D B		,			F B		,		,	
			DN 50, PN 25/40			<u> </u>			DN 100, PN 25/40			
		D D			1 TYPE B2		F D	_	DN 100, PN 63			2-1 TYPE B2
) E	,		1 TYPE B2	2	FE	_	DN 100, PN 100			2-1 TYPE B2
		OF		EN 1092-1			FF		DN 100, PN 160			2-1 TYPE B2
) G		EN 1092-1			FG		DN 100, PN 250			2-1 TYPE B2
) H		EN 1092-1			FH	_	DN 100, PN 320			2-1 TYPE B2
		DЈ	,	EN 1092-1	TYPE B2		F J		DN 100, PN 400	EN	109	2-1 TYPE B2
	To	rque	Tube Mating Flang									
		ΓТ	600# Fisher (249B/	259B) in o	carbon ste	el						
		ГU	600# Fisher (249C)									
	J_T	JΤ	600# Masoneilan fl	ange in ca	arbon stee	1						
	<u> </u>	JU	600# Masoneilan fl	ange in st	ainless ste	el						
			1 Confirm mo	ounting conc	litions/nozzle	e diameter to	ensure	suffi	cient clearance.			
4	Ъ	L	② Always che	ck dimensio	ns if ASME/I	EN flanges ar						
* *	*		③ NOT availal	die with 3rd	aigit 'D' or 'I							
-		٦		\sum			\sum	\sim	<u> </u>	\overline{X}	\square	
7		1-		1////]-	-[///]	/////	$\backslash $ -	- /	///////////////////////////////////////	$\langle N \rangle$	$\langle \rangle \rangle$	
1 2	3	_	4 5 6	7	8	9 10)		11 12 13	<u> </u>	4	15
	-			-	-	- 10					-	-

3.7.3 Smal Coaxial Probe continued -

6 | CONSTRUCTION CODES

2		NSTRUCTION CODES
Γ	0	Industrial
Γ	Κ	ASME B31.1 — NOT available with 4th digits T or U
	L	ASME B31.3
	М	ASME B31.3 & NACE MR0175/MR0103 — NOT available with carbon steel flange
Γ	Ν	NACE MR0175/MR0103 — NOT available with carbon steel flange

7 | FLANGE OPTIONS — Offset flanges are available only with small coaxial probes

	None	PTIONS — Offset flanges are available only with small coaxial probes
1	Offse	t (For use with AURORA) — Available only with 3rd digit P, S or T and 4th digit 6
2		t with 1/2" NPT Vent (For use with AURORA) — Available only with 3rd digit P, S or T and 4th digit 6
3	_	t with 3/4" NPT Vent (For use with AURORA) — Available only with 3rd digit P, S or T and 4th digit 6
	8 MA	TERIAL OF CONSTRUCTION - FLANGE/NUT/ROD/INSULATION
	A	316 SS/316L SS
	В	Hastelloy C
	С	Monel — Not available with 3rd Digit S
	R	316 SS/316L SS with Carbon Steel Flange
	S	Hastelloy C with Carbon Steel Flange
	Т	Monel with Carbon Steel Flange — Not available with 3rd Digit S
		9 SPACER MATERIAL
		1 TFE (+200 °C/+400 °F) — Available only with 3rd digit P or T — $\mathbf{E}_r \ge 1.4$
		2 PEEK HT — Available only with 3rd digit D — $\varepsilon_r \ge 1.4 (+345 \text{ °C/}+650 \text{ °F}) \text{ or } S (+300 \text{ °C/}+575 \text{ °F})$
		3 Ceramic (+425 °C/+650 °F) — Available only with 3rd digit D — $\mathcal{E}_r \ge 2.0$ or with 3rd digit S ①
		5 None - Single bottom metal spacer — Available only with 3rd digit S ①
		① Not available with 5th digit 1 or 2.
		10 O-RING MATERIALS/SEAL OPTIONS
		0 Viton [®] GFLT — Available only with 3rd digit T
		2 Kalrez [®] 4079 — Available only with 3rd digit T
		8 Aegis PF 128 (NACE) — Available only with 3rd digit T
		A Kalrez 6375 — Available only with 3rd digit T
		B HF Acid Probe — Available only with 3rd digit T and 8th digit C
		D None/Glass Ceramic Alloy (dual-seal design with annunciator fitting)—Available only with 3rd digit D or I
		N None/Glass Ceramic Alloy — Available only with 3rd digit D, P or S
		11 PROBE SIZE/ELEMENT TYPE/FLUSHING CONNECTION
		2 Small Coaxial (22 mm/0.875 inches)
		A Medium Coaxial (32 mm/ 1.62 inches) ⁽²⁾
		B Large Coaxial (42 mm/1.62 inches) ③
		 244 cm (96 inches) maximum length 305 cm (120 inches) maximum length
		12 SPECIAL OPTIONS
		0 Single Length Probe (Non-Segmented)
		13 14 15 INSERTION LENGTH
		X X X $cm (030 - 610)$
		Image: Constraint of the second se
	-	
2 3	4	5 6 7 8 9 10 11 12 13 14 15

7

3.7.4 Caged Probe

 1 | TECHNOLOGY

 7
 ECLIPSE GWR Probes - Model 706

А	Eng	lish (inches)									
С	Met	ric (centimete	ers)								
	3 CO	NFIGURATI	ON/STYLE (RIGID)								
	G	Overfill Ca	aged Rigid Probe for use in	chambers	+200 °C	(+	400 °F)				
	J		aged High Temp/High Pre								
	L	Overfill Ca	aged High Pressure Probe	with Glas	s Seal fo	r u	se in ch	ambers +	200 °C (+400	°F)
		45 P Asme f	PROCESS CONNECTION Flanges	I – SIZE/*	TYPE (c	con	sult fac	tory for	other p	roces	s connections) ①
		4 3	2" 150# ASME RF	54	3" 3	300-	# ASME	RF	63	4"	150# ASME RF
		4 4	2" 300# ASME RF	55	3" 6	600	# ASME	RF	64	4"	300# ASME RF
		4 5	2" 600# ASME RF	56	3" 9	900	# ASME	RF	65	4"	600# ASME RF
		47	2" 900/1500# ASME RF	57	3" 1	150	0# ASMI	E RF	66	4"	900# ASME RF
		48	2" 2500# ASME RF	58	3" 2	250	0# ASMI	E RF	67	4"	1500# ASME RF
		4 K	2" 600# ASME RTJ	5 K	3" 6	600	# ASME	RTJ	68	4"	2500# ASME RF
		4 M	2" 900/1500# ASME RTJ	J 5 L	3" 9	900	# ASME	RTJ	6 K	4"	600# ASME RTJ
		4 N	2" 2500# ASME RTJ	5 M	3" 1	150	0# ASMI	e rtj	6 L	4"	900# ASME RTJ
		53	3" 150# ASME RF	5 N	3" 2	250	0# ASMI	e rtj	6 M	4"	1500# ASME RTJ
		EN Flar	nges						6 N	4"	2500# ASME RTJ
		DA	_	л 1092-1 T	YPE A	1	ΕF	DN 80	PN 160		EN 1092-1 TYPE I
		DB	DN 50, PN 25/40 EN	л 1092-1 T	YPE A	1	ΕG	DN 80	PN 250		EN 1092-1 TYPE I
		D D	DN 50, PN 63 EN	N 1092-1 Т	YPE B2	1	ЕН	DN 80	PN 320		EN 1092-1 TYPE I
		DE	DN 50, PN 100 EN	N 1092-1 Т	YPE B2		ΕJ	DN 80,	PN 400		EN 1092-1 TYPE I
		D F	DN 50, PN 160 EN	V 1092-1 T	YPE B2		FΑ	DN 10), PN 16		EN 1092-1 TYPE A
		D G	DN 50, PN 250 EN	V 1092-1 T	YPE B2		FΒ	DN 10), PN 25	/40	EN 1092-1 TYPE A
		DH	DN 50, PN 320 EN	J 1092-1 T	YPE B2		F D), PN 63		EN 1092-1 TYPE I
		DJ	DN 50, PN 400 EN	V 1092-1 T	YPE B2		FΕ	DN 10), PN 10	0	EN 1092-1 TYPE I
		E A		N 1092-1 Т			FF), PN 16		EN 1092-1 TYPE I
		EB		N 1092-1 T			FG), PN 25		EN 1092-1 TYPE I
		E D		N 1092-1 T			FH), PN 32		EN 1092-1 TYPE I
		ΕE	DN 80, PN 100 EN	ы 1092-1 Т	YPE B2		FJ	DN 10), PN 40	0	EN 1092-1 TYPE I
		Torque	e Tube Mating Flanges @	2)							
		ТТ	600# Fisher (249B/259B) in carbo	n steel						
		ΤU	600# Fisher (249C) in st	ainless ste	eel						
		UΤ	600# Masoneilan flange	in carbon	steel						
		UU	600# Masoneilan flange	in stainles	ss steel						
V	¥		 Confirm mounting condition Always check dimensions i 					nt clearanc	e.		
]_	-	- ///	-	\mathbb{N}	

3.7.4 Caged Probe continued =

6	CONSTRUCTION	CODES
----------	--------------	-------

• • • • • •	NSTRUCTION CODES	
0	Industrial	
К	ASME B31.1	
L	ASME B31.3	
М	ASME B31.3 & NACE MR0175/MR0103 — NOT available with carbon steel flange	
N	NACE MR0175/MR0103 — NOT available with carbon steel flange	
	7 FLANGE OPTIONS	
	0 None	
	1 Offset (For use with AURORA) — Available only with 3rd digit G and J and 4th digit 6	
	2 Offset with 1/2" NPT Vent (For use with AURORA) — Available only with 3rd digit G and J and 4th digit 6	
	3 Offset with 3/4" NPT Vent (For use with AURORA) — Available only with 3rd digit G and J and 4th digit 6	
	8 MATERIAL OF CONSTRUCTION - MFG/NUT/ROD/INSULATION	
	A 316 SS/316L SS	
	B Hastelloy C	
	C Monel	
	R 316 SS/316L SS with Carbon Steel Flange	
	S Hastelloy C with Carbon Steel Flange	
	T Monel with Carbon Steel Flange	
	9 SPACER MATERIAL	
	2 PEEK HT (+345 °C/+650 °F)	
	3 Ceramic (High Temp.>+425 °C/+800 °F) — Available only with 3rd digit J	
	4 Duratron [®] CU60 PBI (+425 °C/+800 °F) — Available only with 3rd digit J	
	10 O-RING MATERIALS/SEAL OPTIONS	
	0 Viton [®] GFLT — Not available with 3rd digit J or L	
	2 Kalrez 4079 — Not available with 3rd digit J or L	
	8 Aegis PF 128 (NACE) — Not available with 3rd digit J or L	
	A Kalrez 6375 — Not available with 3rd digit J or L	
	B HF Acid Probe — Available only with 3rd digit G and 8th digit C	
	D None/Glass Ceramic Alloy (Dual Seal Design with annunciator fitting) — Not available with 3rd digit G	
	N None/Glass Ceramic Alloy —Not available with 3rd digit G	
	11 PROBE SIZE/ELEMENT TYPE/FLUSHING CONNECTION	
	0 None	
	12 SPECIAL OPTIONS ①	
	1 Single Length Removable Probe	
	2 2-piece Segmented Probe	
	3 3-piece Segmented Probe	
	4 4-piece Segmented Probe 0 Befer to section 3.7.7.	
	13 14 15 INSERTION LENGTH	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	unit of measure determined by 2nd digit of model number	
3 4 5	6 7 8 9 10 11 12 13 14 15	

3.7.5 Single Rod Rigid Probe -

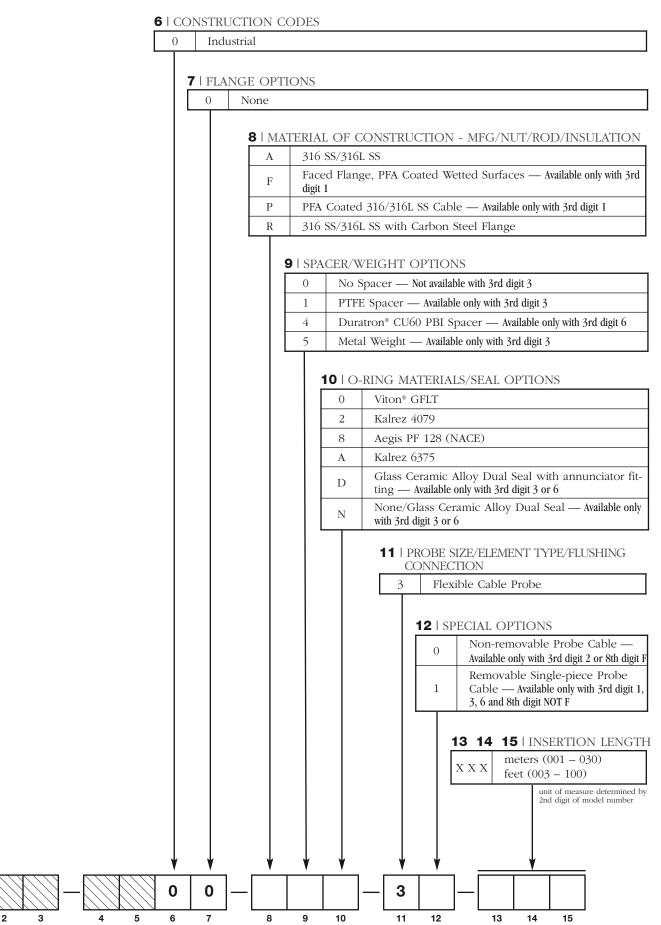
1 | TECHNOLOGY

2	MFA	SURF	MENT SYSTEM
	A		ish (inches)
	C		ic (centimeters)
	3	I CON	NFIGURATION/STYLE (RIGID)
		F	Single Rod, Standard (200 °C/+400 °F) for in-tank applications — NOT available with 10th digit N or D
		М	Single Rod, High Pressure Probe with glass seal (+200 °C/+400 °F), for in-tank applications — Available only with 10 th Digit N or D
	L	Ν	Single Rod, High Temp/High Pressure with glass seal (+450 °C/+850 °F), for in-tank applications — Available only with 10 th Digit N of
			4 5 PROCESS CONNECTION – SIZE/TYPE (consult factory for other process connections) (Threaded
			1 1 3/4" NPT Thread ⁽²⁾ 2 2 1" BSP (G 1") Thread ⁽²⁾
			2 1 1" NPT Thread ② 2 1 1" NPT Thread ②
			4 1 2" NPT Thread
			ASME Flanges
			3 3 1 1/2" 150# ASME RF①③ 4 N 2" 2500# ASME RTJ ④ 5 N 3" 2500# ASME RTJ
			3 4 1 1/2" 300# ASME RF①③ 5 3 3" 150# ASME RF 6 3 4" 150# ASME RF
			3 5 1 1/2 600# ASME RF 5 4 3" 300# ASME RF 6 4 4" 300# ASME RF
			3 7 1 1/2" 900/1500# ASME RF④ 5 5 3" 600# ASME RF 6 5 4" 600# ASME RF
			3 K 1 1/2" 600# ASME RTJ ④ 5 6 3" 900# ASME RF ④ 6 6 4" 900# ASME RF ④
			3 M 1 1/2" 900/1500# ASME RTJ@ 5 7 3" 1500# ASME RF @ 6 7 4" 1500# ASME RF @
			4 3 2" 150# ASME RF ① 5 8 3" 2500# ASME RF ④ 6 8 4" 2500# ASME RF ④
			4 4 2" 300# ASME RF ① 5 K 3" 600# ASME RTJ ④ 6 K 4" 600# ASME RTJ ④
			4 5 2" 600# ASME RF ① 5 L 3" 900# ASME RTJ ④ 6 L 4" 900# ASME RTJ ④
			4 7 2" 900/1500# ASME RF④ 5 M 3" 1500# ASME RTJ ④ 6 M 4" 1500# ASME RTJ
			4 8 2" 2500# ASME RF ④ 6 N 4" 2500# ASME RTJ
			4 K 2" 600# ASME RTJ ④
			4 M 2" 900/1500# ASME RTJ ④
			EN Flanges
			C B DN 40, PN 16/25/40 EN 1092-1 TYPE A 🛈 ③ E D DN 80, PN 63 EN 1092-1 TYPE B2
			C C DN 40, PN 63/100 EN 1092-1 TYPE B2 ①③ E E DN 80, PN 100 EN 1092-1 TYPE B2
			C F DN 40, PN 160 EN 1092-1 TYPE B2 🛈 3 4 E F DN 80, PN 160 EN 1092-1 TYPE B2
			C G DN 40, PN 250 EN 1092-1 TYPE B2 🛈 🕸 E G DN 80, PN 250 EN 1092-1 TYPE B2
			D A DN 50, PN 16 EN 1092-1 TYPE A ① E H DN 80, PN 320 EN 1092-1 TYPE B2
			D B DN 50, PN 25/40 EN 1092-1 TYPE A ① E J DN 80, PN 400 EN 1092-1 TYPE B2
			D D DN 50, PN 63 EN 1092-1 TYPE B2 ① F A DN 100, PN 16 EN 1092-1 TYPE A
			D E DN 50, PN 100 EN 1092-1 TYPE B2 ① F B DN 100, PN 25/40 EN 1092-1 TYPE A
			D F DN 50, PN 160 EN 1092-1 TYPE B2 ④ F D DN 100, PN 63 EN 1092-1 TYPE B2
			D G DN 50, PN 250 EN 1092-1 TYPE B2 ④ F E DN 100, PN 100 EN 1092-1 TYPE B2
			D H DN 50, PN 320 EN 1092-1 TYPE B2 ④ F F DN 100, PN 160 EN 1092-1 TYPE B2
			D J DN 50, PN 400 EN 1092-1 TYPE B2 ④ F G DN 100, PN 250 EN 1092-1 TYPE B2
			E A DN 80, PN 16 EN 1092-1 TYPE A F H DN 100, PN 320 EN 1092-1 TYPE B2 F B DN 80, PN 35/60 EN 1002.1 TYPE A F L DN 100, PN 320 EN 1002.1 TYPE B2
			E B DN 80, PN 25/40 EN 1092-1 TYPE A F J DN 100, PN 400 EN 1092-1 TYPE B2
			 Confirm mounting conditions/nozzle diameter to ensure sufficient clearance. Not available with 3rd Digit N or 8th Digit P Not available with 3rd digit 'M' or 'N'
* <u>`</u> 7	∀ 	*	♥ ④ Not available with 3rd digit 'F'
'		3	$- _{4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ }$

BE 57-606.9 ECLIPSE Model 706 Guided Wave Radar Transmitter

3.7.5 Single Rod Rigid Probe continued

Single Ro	od Rigid Prob						-	-			
	e F		NSTRUCT		ODES						
	_	0	Industri								
	-	K	ASME E	-							
	-	L	ASME E		NACE		- /MDO	102	NOT		h anthan starl flange
	-	M								n steel flang	h carbon steel flange
	L	1				<u> </u>		abic w		iii steel nang	
			I FLANG		ONS						
				one						/	/
				1			TRUC	CTIO	N - MF	FG/NUT/	ROD/INSULATION
			A		5 SS/31						
			B C		stelloy nel	C					
			F			nge PF/	A coate	ed we	etted sur	rfaces — /	Available only with Digit 3rd digit F
			P			~ .				Digit 3rd di	
			R						n Steel I	0	<u>,</u>
			S						eel Flan		
			Т	Mc	nel wit	h Carb	on Ste	eel Fl	ange		
				9 SPA	CER N	IATER	IAL				
				0				e with	3rd Digit	t N	
				2	PEEF	K HT (-	+345 °	C/+6	50 °F) -	— Available	e only with 3rd digit N
				3	Cera	mic (Hi	gh Ter	np.>·	+425 °C	/+800 °F)	— Available only with 3rd digit N
				4	Dura	tron® C	U60 PI	BI (+	425 °C/	+800 °F) -	— Available only with 3rd digit N
					1	00	RING	MA	TERIAI	LS/SEAL	OPTIONS
						0	Vite	on® C	GFLT —	Not availab	ble with 3rd digit M or N
						2	Kalı	rez 4	079 —	Not availabl	le with 3rd digit M or N
						8	~	-			Not available with 3rd digit M or N
						А					le with 3rd digit M or N
						D					by Dual Seal with annuncia- vith 3rd digit F
						Ν		ne/Gl 3rd d		amic Alloy	7 Dual Seal — Not available
					L			1 P	ROBE S		MENT TYPE/FLUSHING
									ONNEC		1 D 1
								0	Star	ndard Sinş	gle Rod
									12 SI	-	OPTIONS
									0		emovable Rod — Available only A Coated Probes(8th digit F or P)
									1	Remo	vable Rod — Not available with ated Probes(8th Digit F or P)
									2	-	Diece segmented probe
									3	^	-piece segmented probe
									4	Four-p	piece segmented probe
									5	^	viece segmented probe
									6	Six-pi	ece segmented probe
										13 14	15 INSERTION LENGTH
			L							X X X	cm (030 – 732) inches (012 – 288)
										XXX	maximum 610 cm (240 inches) when 8th digit = F or P
		Ţ		Ţ		Ţ		Ţ	J I		Unit of measure determined by
	<u>//////</u>	V			V	•		•	*	ı —	2nd digit of model number.
	-		0 —				$\left -\right $	0			
3	4 5	6	7	8	9	10		11	12	13	3 14 15


3.7.6 Single Rod Flexible Probe

1 | TECHNOLOGY

7 ECLIPSE GWR Probes - Model 706

2 Single Ca 3 Single Ca 6 Single Ca 6 Single Ca 4 5 1 Thread 4 1 ASME 4 3 4 4	ers) EXIBLE PROBES ble Flexible standard for ble Flexible Light Duty H ble Flexible HP for in-ta ble Flexible HTHP for cl PROCESS CONNECTIO	Bulk S nk ap hamb	Solids pplicatio er appli SIZE/T	ns (+20 cations *YPE (00 ° (+4	°C/+400 ° 450 °C/+	°F) 850 °F) ctory for	-	rocess connection hread (not available with 1	
3 SPECIALTY FL 1 Single Ca 2 Single Ca 3 Single Ca 6 Single Ca 6 Single Ca 4 5 1 Thread 4 1 ASME 4 3 4 4	EXIBLE PROBES ble Flexible standard for ble Flexible Light Duty F ble Flexible HP for in-tag ble Flexible HTHP for cl PROCESS CONNECTIC ed 2" NPT Thread (not avai Flanges	Bulk S nk ap hamb	Solids pplicatio er appli SIZE/T	ns (+20 cations *YPE (00 ° (+4	°C/+400 ° 450 °C/+ nsult fac	°F) 850 °F) ctory for	-		
1Single Ca2Single Ca3Single Ca6Single Ca6Single Ca45 1Thread4 14 34 34 4	ble Flexible standard for ble Flexible Light Duty H ble Flexible HP for in-tai ble Flexible HTHP for cl PROCESS CONNECTIC ed 2" NPT Thread (not avai Flanges	Bulk S nk ap hamb	Solids pplicatio er appli SIZE/T	ns (+20 cations *YPE (00 ° (+4	°C/+400 ° 450 °C/+ nsult fac	°F) 850 °F) ctory for	-		
1Single Ca2Single Ca3Single Ca6Single Ca6Single Ca45 1Thread4 14 34 34 4	ble Flexible standard for ble Flexible Light Duty H ble Flexible HP for in-tai ble Flexible HTHP for cl PROCESS CONNECTIC ed 2" NPT Thread (not avai Flanges	Bulk S nk ap hamb	Solids pplicatio er appli SIZE/T	ns (+20 cations *YPE (00 ° (+4	°C/+400 ° 450 °C/+ nsult fac	°F) 850 °F) ctory for	-		
1Single Ca2Single Ca3Single Ca6Single Ca6Single Ca45 1Thread4 14 34 34 4	ble Flexible standard for ble Flexible Light Duty H ble Flexible HP for in-tai ble Flexible HTHP for cl PROCESS CONNECTIC ed 2" NPT Thread (not avai Flanges	Bulk S nk ap hamb	Solids pplicatio er appli SIZE/T	ns (+20 cations *YPE (00 ° (+4	°C/+400 ° 450 °C/+ nsult fac	°F) 850 °F) ctory for	-		
2 Single Ca 3 Single Ca 6 Single Ca 6 Single Ca 4 5 1 Thread 4 1 ASME 4 3 4 4	ble Flexible Light Duty H ble Flexible HP for in-tau ble Flexible HTHP for cl PROCESS CONNECTIC ed 2" NPT Thread (not ava Flanges	Bulk S nk ap hamb	Solids pplicatio er appli SIZE/T	ns (+20 cations *YPE (00 ° (+4	°C/+400 ° 450 °C/+ nsult fac	°F) 850 °F) ctory for	-		
3 Single Ca 6 Single Ca 6 Single Ca 4 5 1 Thread 4 1 ASME 4 3 4 4 4 4 4	ble Flexible HP for in-tab ble Flexible HTHP for cl PROCESS CONNECTIC ed 2" NPT Thread (not avai Flanges	nk ap hamb DN –	oplicatio er appli SIZE/T	cations YPE ((+4	450 °C/+ nsult fac	850 °F) ctory for	-		
6 Single Ca 4 5 1 Thread 4 1 ASME 4 3 4 4	ble Flexible HTHP for cl PROCESS CONNECTIC ed 2" NPT Thread (not avai Flanges	hamb DN –	er appli SIZE/T	cations YPE ((+4	450 °C/+ nsult fac	850 °F) ctory for	-		
4 5 1 Thread 4 1 ASME 4 3 4 4	PROCESS CONNECTIC ed 2" NPT Thread (not avai Flanges	DN –	SIZE/T	YPE (nsult fac	ctory for	-		
Thread 4 ASME 4 4 4 4 4 4 4	ed 2" NPT Thread (not avai Flanges				cor			-		
Thread 4 ASME 4 4 4 4 4 4 4	ed 2" NPT Thread (not avai Flanges				cor			-		
Thread 4 ASME 4 4 4 4 4 4 4	ed 2" NPT Thread (not avai Flanges				cor			-		
4 1 ASME 1 4 3 4 4	2" NPT Thread (not avai Flanges	ilable w	ith the 7y6)] [4.2	2" RSP		hraad (not available with t	4 = 4
ASME 1 4 3 4 4	Flanges	ilable w	ith the 7y6)		42	2" BSP		broad (not available with t	a = <
4 3 4 4	-						- 101	(G 2") Tł	Thead (not available with)	tne 7y6
4 3 4 4	-									
4 4	2" 150# ASME RF ∪		5.2	21	150		DE		41 150 / ACME	
			53	-		# ASME		63 64	4" 150# ASME 4" 300# ASME 4	
4 5	2" 300# ASME RF ① 2" 600# ASME RF ①		54 55	-		# ASME # ASME		65	4" 300# ASME 4" 600# ASME 4	
47	2" 900/1500# ASME		56	-		# ASME		66	4" 900# ASME	
4 8	2" 2500# ASME RF		57					67	4" 1500# ASME	
	-									
4 M		RTJ	5 K					6 K		
4 N	2" 2500# ASME RTJ		5 L	3"	900	# ASME	RTJ	6 L	4" 900# ASME	RTJ (
		- 1	5 M	3"	150	0# ASME	E RTJ	6 M	4" 1500# ASME	RTJ
			5 N	3" :	250	0# ASME	E RTJ	6 N	4" 2500# ASME	RTJ
	-				-	r				
					┤╎					
					- +				,	
					-1 1	-				
	,				-1 1			/		
	,				-1 1			/	EN 1092-1 TYP	
DJ	,				-1 1	FE		,	,	
E A	,				11	FF		,		
E B	,	N 109	2-1 TYI	PE A	11	FG		,		E B2
E D	DN 80, PN 63 EI	N 109	2-1 TYI	PE B2][FΗ	DN 100), PN 320) EN 1092-1 TYP	E B2
ΕE	DN 80, PN 100 EI	N 109	2-1 TY	PE B2][FJ	DN 100), PN 400) EN 1092-1 TYP	E B2
				meter to	ens	ure sufficie	ent clearanc	ce.		
	② Available only with 3rd [Digit 3	or 6							
* *										
		\square	X//	X//	7	\square	$\chi//2$	$\langle \rangle \rangle$	X//X//2	
	4 K 4 M 4 N EN Fla D A D B D D D E D F D G D H D J E A E B E D E E	4 K 2" 600# ASME RTJ 4 M 2" 900/1500# ASME 4 N 2" 2500# ASME RTJ EN Flanges D A D A DN 50, PN 16 E D B DN 50, PN 25/40 E D D D 50, PN 63 E D E DN 50, PN 160 E D F DN 50, PN 160 E D G DN 50, PN 320 E D J DN 50, PN 320 E D J DN 50, PN 400 E E A DN 80, PN 16 E E D DN 80, PN 163 E E D DN 80, PN 100 E O Confirm mounting cond @ Available only with 3rd I	4 K 2" 600# ASME RTJ 4 M 2" 900/1500# ASME RTJ 4 N 2" 2500# ASME RTJ 4 N 2" 2500# ASME RTJ EN Flanges D A DN 50, PN 16 EN 109 D B DN 50, PN 25/40 EN 109 D D DN 50, PN 63 EN 109 D E DN 50, PN 63 EN 109 D F DN 50, PN 100 EN 109 D G DN 50, PN 160 EN 109 D H DN 50, PN 250 EN 109 D H DN 50, PN 320 EN 109 D J DN 50, PN 400 EN 109 E A DN 80, PN 25/40 EN 109 E B DN 80, PN 63 EN 109 E E DN 80, PN 63 EN 109 E E DN 80, PN 63 EN 109 Ø Confirm mounting conditions/r @ Available only with 3rd Digit 3	4 K 2" 600# ASME RTJ 5 8 4 M 2" 900/1500# ASME RTJ 5 K 4 N 2" 2500# ASME RTJ 5 L 5 M 5 N EN Flanges 5 N D A DN 50, PN 16 EN 1092-1 TYH D B DN 50, PN 25/40 EN 1092-1 TYH D D DN 50, PN 63 EN 1092-1 TYH D E DN 50, PN 100 EN 1092-1 TYH D F DN 50, PN 100 EN 1092-1 TYH D G DN 50, PN 160 EN 1092-1 TYH D G DN 50, PN 250 EN 1092-1 TYH D J DN 50, PN 320 EN 1092-1 TYH D J DN 50, PN 400 EN 1092-1 TYH D J DN 50, PN 400 EN 1092-1 TYH E A DN 80, PN 16 EN 1092-1 TYH E D DN 80, PN 63 EN 1092-1 TYH © Confirm mounting conditions/nozzle dia @ Available only with 3rd Digit 3 or 6	4 K 2" 600# ASME RTJ 5 8 3" 4 M 2" 900/1500# ASME RTJ 5 K 3" 5 K 3" 6 4 N 2" 2500# ASME RTJ 5 K 3" 6 5 K 3" 6 4 N 2" 2500# ASME RTJ 5 K 3" 6 5 K 3" 6 4 N 2" 2500# ASME RTJ 5 K 3" 6 5 K 3" 6 4 N 2" 2500# ASME RTJ 5 K 3" 6 5 K 3" 6 4 N 2" 2500# ASME RTJ 5 K 3" 5 8 3" 5 5 N 3" 5 N 3	4 K 2" 600# ASME RTJ 4 M 2" 900/1500# ASME RTJ 4 N 2" 2500# ASME RTJ 5 K 3" 600 5 L 3" 900 5 M 3" 150 5 N 3" 250 EN Flanges 5 N 3" 250 EN Flanges 0 5 N 3" 250 EN Flanges 0 0 D 0.5 0, PN 16 EN 1092-1 TYPE A 0 D B DN 50, PN 25/40 EN 1092-1 TYPE B2 0 D F DN 50, PN 63 EN 1092-1 TYPE B2 0 D F DN 50, PN 160 EN 1092-1 TYPE B2 0 D G DN 50, PN 250 EN 1092-1 TYPE B2 0 D H DN 50, PN 400 EN 1092-1 TYPE B2 0 D J DN 50, PN 63 EN 1092-1 TYPE A 0 E A DN 80, PN 63 EN 1092-1 TYPE A 0 E B DN 80, PN 63 EN 1092-1 TYPE B2 0 Confirm mounting conditions/nozzle diameter to ens © Available only with 3rd Digit 3 or 6	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

3.7.6 Single Rod Flexible Probe continued

7

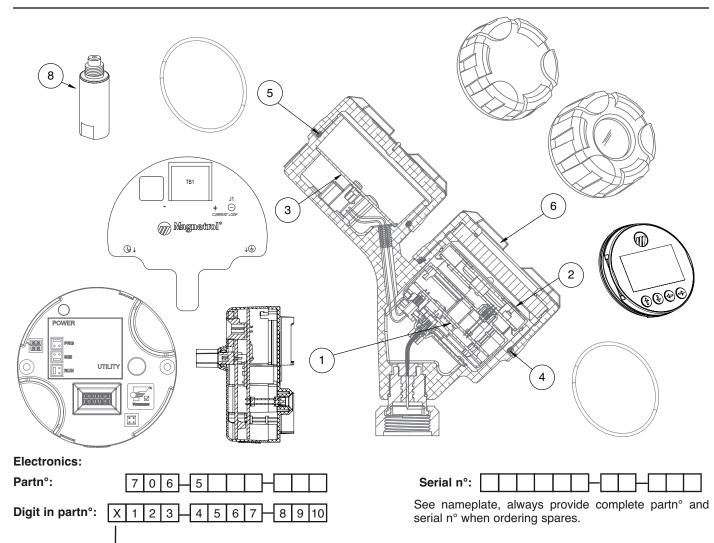
1

3.7.7 Segmented Probe Options

12th Digit of Model Number

Probe Model	Single length	One Segment	Two Segments	Three Segments	Four Segments	Five Segments	Six Segments
Coaxial Models 7yD, 7yP and 7yT (Enlarged versions only) (3", DN 80 Process Connections and larger)	30 – 610 cm (12 – 240")	60 – 182 cm (24 – 72")	120 – 365 cm (48 – 144")	180 – 548 cm (72 – 216")	240 – 731 cm (96 – 288")	305 – 914 cm (120 – 360")	365 – 999 cm (144 – 396")
Caged Models 7yG, 7yL and 7yJ	Not Available	30 – 305 cm (12 – 120")	60 – 610 cm (24 – 240")	90 – 732 cm (36 – 288")	120 – 732 cm (48 – 288")	Not Available	Not Available

NOTE: Segments will be evenly divided over the length of the probe.


3.8 Parts

3.8.1 Replacement Parts =

EXPEDITE SHIP PLAN (ESP)

Several parts are available for quick shipment, within max. 1 week after factory receipt of purchase order, through the Expedite Ship Plan (ESP).

Parts covered by ESP service are conveniently grey coded in the selection tables.

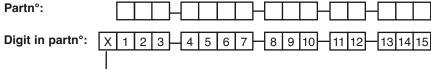
→ X = product with a specific customer requirement

(1) Electronic module				
Digit 5	Digit 6	Replacement part		
1	1, 2	Z31-2849-001		
2	0	Z31-2849-002		
3	0	Z31-2858-001		
4	0	Z31-2849-001		

(3) Wiring PC board					
Digit 5	Digit 6	Replacement part			
1	1, 2	Z30-9165-001			
2, 3	0	Z30-9166-002			
4	0	Z31-2859-001			

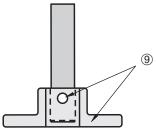
(6) Housing cover					
Digit 7	Digit 8	Digit 9	Replacement part		
0.1.2	all	1, A	004-9225-002		
0, 1, 2	0, 1, 2 ali	2, B	004-9225-003		
	0, 1, A	1 1	036-4413-005		
A, B, C	A, B, C 3, B, C, D	1, A	036-4413-001		
	all	2, B	036-4413-002		

(2) Display module			
Digit 7	Replacement part		
0, 1, 2	not applicable		
A, B, C	Z31-2850-001		
	Replacement part		


	Replacement part
(4) "O"-ring	012-2201-237
(5) "O"-ring	012-2201-237

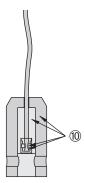
(7) Housing cover				
Digit 9	Replacement part			
1, A	004-9225-002			
2, B	004-9225-003			

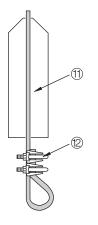
(8) 705/706 Adapter				
Digit 9	Replacement part			
1, 2	not applicable			
A, B	032-6923-001			


Probe:

Partn°:

X = product with a specific customer requirement


Bottom spacer for single rod GWR probe


7yF, 7yM or 7yN single rod

	(9) Bottom spacer + pin kit								
Digit 3	Digit 8	Digit 9	Replacement part						
	A, R, U		089-9114-008						
F, M	B, S	0	089-9114-009						
	С, Т		089-9114-010						
	A, R, U		089-9114-005						
N	B, S	2	089-9114-006						
	С, Т		089-9114-007						

Cable weight for flexible GWR probe

7y1, 7y3 single cable

7y2, 7y3 single cable

	(10) Cable weight assembly									
Digit 3	Digit 4	Digit 8 Digit 9		Replacement part						
	2, 3	A, J		consult factory						
1	4, 5, 6, D, E, F	A, R, U	0	089-9120-001						
	4, 5, 6, D, E, F	F, J		consult factory						
3	all	all	1	consult factory						

(11) Cable weight								
Digit 3	Digit 8 Digit 9		Replacement part					
2	A, R	0	004-8778-001					
3	all	5	consult factory					

	(12) Cable clamp									
Digit 3	Digit 8	Digit 9	Replacement part							
2	A, R	0	010-1731-001							
3	A, R, U	5	(ordering quantity: 2)							
3	J	5	consult factory							

4.0 Advanced Configuration/ Troubleshooting Techniques

This section contains information regarding some of the advanced configuration and troubleshooting capability contained within the Model 706 transmitter. These diagnostic options are best suited for use with PACTware and the Model 706 DTM, and should be implemented only after contacting Magnetrol Technical Support.

4.1 End-of-Probe Analysis (EOPA)

Please note that due to the operation of this method, End of Probe Analysis cannot be applied with interface measurement, applications with a "water" bottoms, or with stratifying liquids. Therefore, EOPA will not be available when Measurement Type = Interface & Level.

When EOPA is enabled and the calculated (inferred level) is being used, a diagnostic warning shown as "Inferred Level" will be present.

4.1.1 Enable EOPA using PACTware

Click on the Device Setup tab, and then select Advanced Config. In the lower left corner select the correct Polarity for the End of Probe pulse, then turn on the EoP Analysis. The Eop Dielectric box will then appear. Fill in the correct Dielectric of the process medium being measured.

	sthe €3 100 o Probe	Echo Str	98.1 on		lođel 706	GOLIPSE Gdipseilli M	Tagi Long Tagi Descriptori	Nodel 706 GNR Larvel Xmbr 70734303004	ption	Descrip	ð
Stabled (P47)					Stephen				Deprestics	vice Setup	
0 Brabled (Pr/)					ionfig	Factory C	Advanced Config	Local Display Config	1/O Config	Sesic Config	Identity (
Stabled (P4)				Zone	Exercised and a second	Serve Measurement		0 4 0.0 ge 5 s 0.0 ge	None	ncei Settings Alamii	nter Passwo ensitivityr locking Dista Saflety Zone alwer Alarm alwer Alarm
Stabled (P47)		ut	Analog Outp				Rejection	Echo		tings	Threshold Se
1366 7(45			Poll Address		1	None	t Curve Statei	Reje	Fixed Value	lođei	Lvi Thresh M
7146	Enabled (PV)	ut Modei	Analog Outp		2	Level	t Curve Noder	12 Reje		sluer	Lvi Thresh V
7146		turpuD gola	Adjust An	Dite .	0.0		Media Location	Save	Auto Largest	Moder	EoP Thresh)
	1306	ue:	4rsA Trim Va]	Rejection Curve	29 Ner		(alue)	EoP Thresh
636	7145	aluei	20mA Trim V				ensation	Comp		e Settinge	End-of-Prob
	636	in Value:	Fdbk 4mA Ti		1	None	ensation Mode:	Comp	itus 🕑	Pos	EoP Polarity
3204	3204	Trin Value:	Fdbk 20mA1			Integral	le Lengthi	HE CA	2	t Dn	EoP Analysis
D	D	invort	New User Par			On	1.2		2.00	e	EoP Delectri
9		neters	Reset Para								

BE 57-606.9 ECLIPSE Model 706 Guided Wave Radar Transmitter

4.1.2 Enable EOPA using keypad/LCD

From the MAIN MENU, select DEVICE SETUP and press Enter.

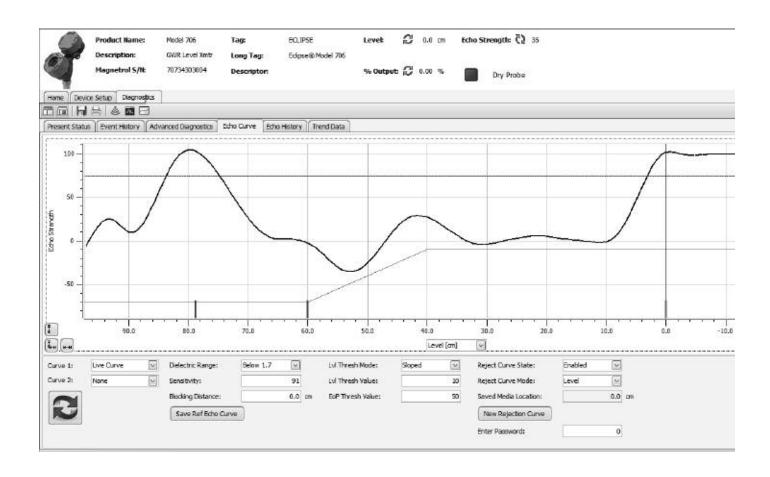
Scroll down to Advanced Config, and then press Enter.

Scroll down to END of PROBE ANALYSIS, and then press Enter.

Enter the correct polarity for EoP Polarity, turn on EoP Analysis, and then enter the correct value for EoP Dielectric. EoP Dielectric is the dielectric constant of the process medium being measured.

4.2 Sloped Threshold

The Sloped Threshold option contained in the Model 706 allows the user additional level detection capability by allowing the threshold to be sloped (bent) around an unwanted signal. The result is a convenient way to ignore undesired signals.

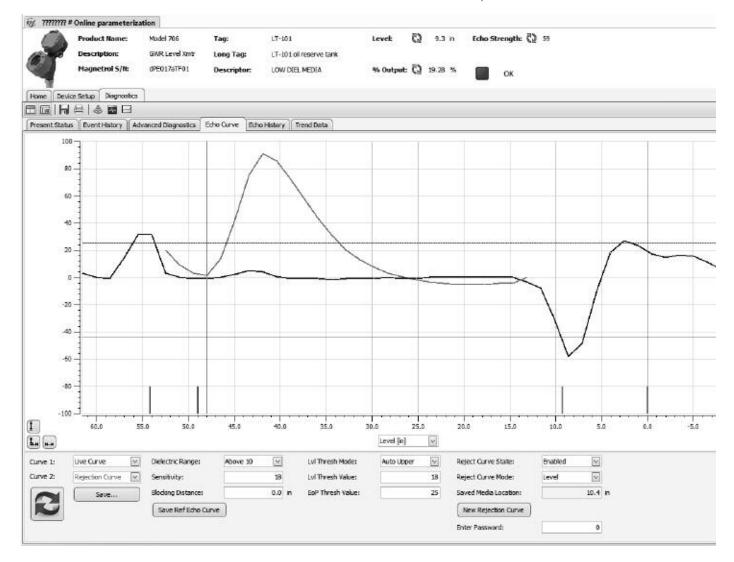

The use of PACTware and the Model 706 DTM is recommended for this option.

Using PACTWare, click on the Device Setup tab, and then select Advanced Config.

In the Threshold Settings section, select "Sloped" within in the Lvl Tresh Mode dropdown box.

Then set the Sloped Start Value, Lvl Tresh Value, and Sloped End Distance.

Ţ	Descrij	t Name: otion: trol 5/N:	Model 705 GWR Level Xmbr 70734303004	Tag: ECLIPSE Long Tag: Eclipse() Model Descriptor:		₿ 0.0 m t \$ 0.00 %	Echo Strength		
Contraction of the local division of the loc	levice Setup	Diagnostics							
Identity	Basic Config	[/O Config	Local Display Con	fig Advanced Config Factory Confi					
nter Passw	iord:		0	0					
ensitivity:			91		Blockung Distance				
ocking Dist	ance:		0.0 cm		S fity Zone				
afety Zora	e Settings								
Safety Zon	e Alarm:	None	۲.		e Level Trim				
wure Alam	n Delay:	-	5 s	Region					
aval Trim:			0.0 cm		Lava1				
hreshold S	iettings			Echo Rejection		Analog	Dutput		
	100 R	Sloped	Ø	Echo Rejection Reject Curve States Enabled	See 1	Analog Poll Add	6399 <i>6</i>		Ø
vl Thresh I	Moder	Sloped	70		0	Poll Add	6399 <i>6</i>	Enabled (PV)	a ×
vi Thresh I loped Star	Mode: rt Value:	Sloped		Reject Curve State: Enabled		Poll Add Analog	ressi	Enabled (Pv)	
vi Thresh I loped Star vi Thresh 1	Mode: rt Value:	Sloped	70	Reject Curve State: Enabled Reject Curve Mode: Level		Poll Add Analog Adjus	ress: Dutput Mode:	Enabled (PV)	
vi Thresh I loped Star vi Thresh I loped End	Modes it Value: Value: Distance:	Sloped	70 10 20.0 cm	Reject Curve State: Enabled Reject Curve Mode: Level Saved Media Location: New Rejection Curve		Poll Add Analog (Adjus 4mA Tri	ress: Dutput Mode: t Analog Output		
vi Thresh I Roped Star vi Thresh 1	Mode: it Value: value: Distance: Mode:		70 10 20.0 cm	Reject Curve State: Enabled Reject Curve Mode: Level Saved Media Location: New Rejection Curve Compensation	0.0 cn	Poll Add Analog Anglus 4mA Tri 20mA T	ressi Dutput Mode: I: Analog Output II: Value:		1306 7145
vl Thresh I loped Star vl Thresh 1 loped End oP Thresh oP Thresh	Mode: it Value: value: Distance: Mode:		70 10 20.0 cm st	Reject Curve State: Enabled Reject Curve Mode: Level Saved Media Location: New Rejection Curve		Poll Add Analog Analog 4mA Tri 20mA Tr Fdisk-4m	ress: Dutput Mode: t Analog Output n Value: im Value:		1306



4.3 Echo Rejection

Another way to ignore unwanted signals along the length of the probe is by utilizing the Echo Rejection feature.

Setup using Pactware

Select the Diagnostics tab and then the Echo Curve tab. Then click on New Rejection Curve

Click on OK at the loop warning message.

New Rejection Curve	
WARNING - Loop should b	e removed from automatic control

On the next screen, please enter the actual process media location and then hit OK.

Model 706 Rev 1	
New Rejection Curve	
Enter the level (units of cm.) corresponding to the actual media location.:	58.1
	OK Abort
Waiting for user input	

A password window will then appear (unless the password was previously entered). Enter the password and hit OK. Then the system calculates the curve, and then saves it. Hit OK to confirm.

Model 706 Rev 1	0.40	Model 706 Rev 1				
New Rejection Curve		New Rejection Curve				
Enter Password:	33	Saved				
	OK Abort	OK Abort				
Waiting for user input		Waiting for user input				

A warning screen is then shown so that the loop can be returned to automatic control.

Model 70)6 Rev 1	perities Carne	
New	Rejection Curve		
0	NOTE - Loop may be re	sturned to automatic control	
-		ок	Abort
Waiting	for user input		

At this point the echo rejection curve can be viewed by selecting Rejection Curve as Curve 2 in the lower left corner of the screen. The Rejection curve will then be displayed in red as shown in the screenshot above.

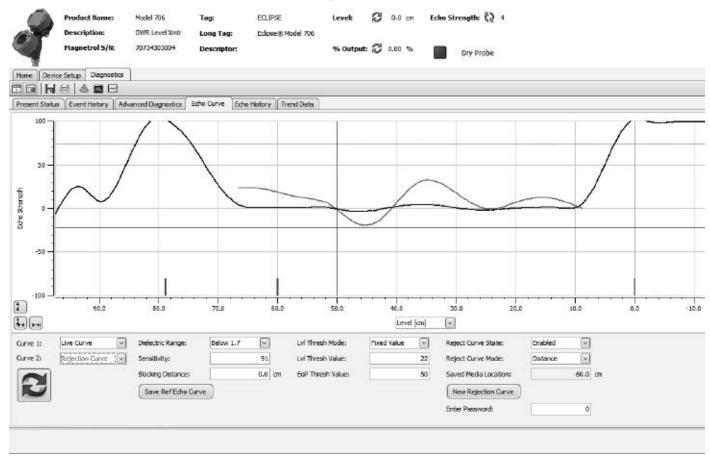
Alternatively, you can follow the procedure below:

Select the Device Setup tab, and then select the Advanced Config tab. Then click on New Rejection Curve.

0 .	roduct Name: escription: lagnetrol S/N:	Model 706 GWR Level Xintr 70734303004	Tag: Long Tag: Descriptor:	EOLIPSE Eclipse@Model 706	Levek % Output:	0 0.0 m	Echo Streny	gth: (2) 0 ry Probe		
Home Device Se	etup Diagnostics									
Identity Basic C	lonfig 1/O Config	Local Display Cor	fig Advanced Config	Fectory Config						
Enter Password:		0	0	Sensor Reference						
Sensitivity:		4	_	Blocku						
Blocking Distance:		0.0 cm		Distar Safet						
Safety Zone Settin	gs			1						
Safety Zone Alarm	Norie			Neasurement Level						
Failure Alarm Delay:		S s		Nessurement Level	4					
Level Trim;		0.0 cm		Ļ	Lavel					
Threshold Settings			the Rejection			Analog Outp	v.+		_	
Lyl Thresh Mode:	Fixed Value		eject Curve State:	Enabled 🔗	1	Poll Address		56 <u>-</u>	0	
Lvl Thresh Value:	Fixed value		eject Curve Mode:	Distance v		Analog Outp		Enabled (PV)	2	
EoP Thresh Node:	Auto Largest		eyect Corve Hoose.	60.0				Dimension (r. 4)		
EoP Thresh Value:	NUTD Congest			60.0	d cu		alog Output			
		29	New Rejection Curve			4mA Trim Va	slue:	1	306	
End-of-Probe Setti	-		ompensation			20mA Trim V	/alue:	7	145	
EoP Polarity:	Positive		ompensation Mode:	None		Fdbk AmA Ti	rim Value:		636	
EoP Analysis:	017	H	Cable Length:	ntegral 🕑		Fdbk 20mA	Trim Value:	3	204	
		Bu	idup Detection:	h 🔽		New User Par	ssword:	(2	
			masanna s			Reset Para	ameters			

You will get a warning regarding the loop, hit OK. On the next screen you need to enter the actual media location and then hit OK.

Model 706 Rev 1	Model 706 Rev 1
New Rejection Curve	New Rejection Curve
WARNING - Loop should be removed from automatic control	Enter the level (units of cm.) corresponding 58.1
OK Abort	OK Abort
Waiting for user input	Waiting for user input


Next a password window might appear if not already entered. Then the system calculates the curve, and then saves it. Hit OK to confirm.

Model 706 Rev 1			Model 706 Rev 1			
New Rejection Curve			New Rejection Curve			
Enter Password:	123		5aved			
	Сĸ	Abort		OK Abort		
Waiting for user input			Waiting for user input			

A warning screen is shown that the loop can be returned to automatic control.

New Rejection Curve		
NOTE - Loop may be return	ed to automatic control	
	OK	Abort

At this point the echo rejection curve can be viewed by selecting Rejection Curve as Curve 2 in the lower left corner of the Echo Curve screen. The Rejection curve will then be displayed in red as shown in the screenshot below.

4.4 Buildup Detection

A unique feature contained within the Model 706 can be used to obtain an indication of build-up along the length of the probe. This can be set as the HART SV or TV which can be monitored in the control room. An algorithm compares the buildup echo strength as compared to the Lvl Thrsh Value, and outputs value in percent.

4.4.1 Buildup Detection Setup using PACTware

Buildup detection is a feature that needs to be turned on in Advanced Config, see below.

-	roduct Name: escription:	Model 706 GWR Level Xmtr	Tag: Long Tag:	ECLIPSE Eclipse () Model 706	Level:	Ø 0.0 m	Echo Stren	gth: 🕄 1		
a -	lagnetrol 5/N:	70734303004	Descriptor:		% Outpu	e 🗭 0.00 %	D	ry Probe		
Home Device S	etup Diagnostics									
Identity Dasic	Config 🎽 L/O Config	Local Display Cont	Advanced Config	actory Config						
inter Password:		0	0	Sensor Refere	and Robert					
ansitivity:		91	<u>_</u>		cking tance					
locking Distances		0.0 cm			tance Fety Zone					
Safety Zone Settin	çs.			•						
Safety Zone Alarm	: None	×			el Trim					
ailure Alarm Delay		5 5	The second	Region						
evel Trin:		0.0 cm		1						
				•	Leiel					
Threshold Settings		Ed	ho Rejection			Analog Out;	aut			
Lui Thresh Mode:	Fixed Value	R:	ject Curve State:	Enabled	~	Poll Address	8		0	
Lui Thresh Value:		22 R/	ject Curve Mode:	Level	×	Analog Out	put Mode:	Enabled (PV)	~	
EoP Thresh Mode:	Auto Largest	Se Se	wed Media Location;	C	0.0 cm	Adjust Ar	nalog Output			
CoP Thresh Value:		50	New Rejection Curve			4mA Trim Ve	slues		1306	
End-of-Probe Sett	ngs		mpensation		-	20mA Trim	Value:		7145	
EoP Polarity:	Positive	1	mpensation Mode:	None	3	Fdbk 4mA T	rim Value:	-	636	
EoP Analysis:	orr 💽	a 🗆			24	Fdbk 20mA	Trim Value:		3204	
				Integral 😐		No. 1 Percent			a	
		Bui	dup Detection:	On 🖂		New User Pa		2	0	
						Reset Para	emeters			

Once turned on progress can be checked in the Advanced Diagnostics screen, see below.

Hone Device	Product Name: Description: Magnetrol S/N: e Setup Diagnostics	Model 706 GWR Level Xmbr 70734303004	Tag: ECLIPSE Long Tag: Eclipse& Model 705 Descriptor:	Leve % 0	nt β 0.0 m fe	_	ngth: 🗊 1 Dry Probe	
Present Status	Event History Adv	vanced Diagnostics	Echo Curve Echo History Trend Data					
Internal Values		B	ec Temperatures		Transmitter Tests			
iducial Ticks:	0	1371 P	resent Temperature: 😂 🛛 👔	°C	Analog Output Test			
ducial Strengt	h: Ø	38 M	lax Temperature: 🚯 20	TC I	C			
evel Ticks:	C2	0 M	In Temperature: 🔇 15	°C	Probe Buildup Percent of Level Threshold:	~	6 %	
cho Strength:	2	1	Reset Max/Min Temps					
istance:		60.0 cm		_	Buildup Location:	C	62.8 cm	
P Tides:	63	893			Buildup Rate:	G [0 %/nonth	
P Strength:	0	100			Check			
P Distance:	õ	55.8 cm						
dbk Current:		4.031 mA						

4.4.2 Buildup Detection Setup using the Keypad

From the menu select DEVICE SETUP and hit Enter.

Scroll down to ADVANCED CONFIG and hit Enter

Select On and hit Enter

Checking buildup can be done from the main display screen. First the unit must be set up to display the Buildup percentage. Go to the main menu and select DEVICE SETUP then hit Enter.

Scroll down to DISPLAY CONFIG and hit Enter.

Scroll down to Probe Buildup and hit Enter, then select View. From the main screen the Buildup percentage is now shown.

IMPORTANT

SERVICE POLICY

Owners of Magnetrol products may request the return of a control; or, any part of a control for complete rebuilding or replacement. They will be rebuilt or replaced promptly. Magnetrol International will repair or replace the control, at no cost to the purchaser, (or owner) **other than transportation cost** if:

- a. Returned within the warranty period; and,
- b. The factory inspection finds the cause of the malfunction to be defective material or workmanship.

If the trouble is the result of conditions beyond our control; or, is **NOT** covered by the warranty, there will be charges for labour and the parts required to rebuild or replace the equipment.

In some cases, it may be expedient to ship replacement parts; or, in extreme cases a complete new control, to replace the original equipment before it is returned. If this is desired, notify the factory of both the model and serial numbers of the control to be replaced. In such cases, credit for the materials returned, will be determined on the basis of the applicability of our warranty.

No claims for misapplication, labour, direct or consequential damage will be allowed.

RETURNED MATERIAL PROCEDURE

So that we may efficiently process any materials that are returned, it is essential that a "Return Material Authorisation" (RMA) form will be obtained from the factory. It is mandatory that this form will be attached to each material returned. This form is available through Magnetrol's local representative or by contacting the factory. Please supply the following information:

- 1. Purchaser Name
- 2. Description of Material
- 3. Serial Number and Ref Number
- 4. Desired Action
- 5. Reason for Return
- 6. Process details

Any unit that was used in a process must be properly cleaned in accordance with the proper health and safety standards applicable by the owner, before it is returned to the factory.

A material Safety Data Sheet (MSDS) must be attached at the outside of the transport crate or box.

All shipments returned to the factory must be by prepaid transportation. Magnetrol *will not accept* collect shipments. All replacements will be shipped Ex Works.

UNDER RESERVE OF MODIFICATIONS

European Headquarters & Manufacturing Facility Heikensstraat 6 9240 Zele, Belgium Tel: +32-(0)52-45.11.11 e-mail: info@magnetrol.be BULLETIN: BE 57-606.9 EFFECTIVE: AUGUST 2021 SUPERSEDES: Npvember 2019

SENSORS, TEST & CALIBRATION

www.magnetrol.com